Bài 1. Các hàm số lượng giác

Bài Tập và lời giải

Câu 1 trang 14 SGK Đại số và Giải tích 11 Nâng cao

Bài 1. Tìm tập xác định của mỗi hàm số sau :

a. \(y = \sqrt {3 - \sin x} \) ;                                                                

b.  \(y = {{1 - \cos x} \over {\sin x}}\)

c. \(y = \sqrt {{{1 - \sin x} \over {1 + \cos x}}} \)                                                                 

d. \(y = \tan \left( {2x + {\pi \over 3}} \right)\) 

Xem lời giải

Câu 2 trang 14 SGK Đại số và Giải tích 11 Nâng cao

Bài 2. Xét tính chẵn – lẻ của hàm số sau :

a. \(y = -2\sin x\)

b. \(y = 3\sin x – 2\)

c. \(y=\sin x – \cos x\)

d. \(y = \sin x\cos^2 x+ \tan x\)

Xem lời giải

Câu 3 trang 14 SGK Đại số và Giải tích 11 Nâng cao

Bài 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau :

a.  \(y = 2\cos \left( {x + {\pi \over 3}} \right) + 3\)

b.  \(y = \sqrt {1 - \sin \left( {{x^2}} \right)} - 1\)

c.  \(y = 4\sin \sqrt x \)

Xem lời giải

Câu 4 trang 14 SGK Đại số và Giải tích 11 Nâng cao
Bài 4. Cho các hàm số \(f(x) = \sin x, g(x) = \cos x, h(x) = \tan x\) và các khoảng\({J_1} = \left( {\pi ;{{3\pi } \over 2}} \right);{J_2} = \left( { - {\pi \over 4};{\pi \over 4}} \right);{J_3} = \left( {{{31\pi } \over 4};{{33\pi } \over 4}} \right);{J_4} = \left( { - {{452\pi } \over 3};{{601\pi } \over 4}} \right)\) Hỏi hàm số nào trong ba hàm số trên đồng biến trên khoảng \(J_1\) ? Trên khoảng \(J_2\) ? Trên khoảng \(J_3\) ? Trên khoảng \(J_4\) ? (

Xem lời giải

Câu 5 trang 14 SGK Đại số và Giải tích 11 Nâng cao

Bài 5. Trong các khẳng định sau, khẳng định nào đúng ? Khẳng định nào sai ? Giải thích vì sao ?

a. Trên mỗi khoảng mà hàm số \(y = \sin x\) đồng biến thì hàm số \(y = \cos x\) nghịch biến.

b. Trên mỗi khoảng mà hàm số \(y = \sin^2 x\) đồng biến thì hàm số \(y = \cos^2 x\) nghịch biến.

Xem lời giải

Câu 6 trang 15 SGK Đại số và Giải tích 11 Nâng cao

Bài 6. Cho hàm số \(y = f(x) = 2\sin 2x\)

a. Chứng minh rằng với số nguyên \(k\) tùy ý, luôn có \(f(x + kπ) = f(x)\) với mọi \(x\).

b. Lập bảng biến thiên của hàm số \(y = 2\sin 2x\) trên đoạn  \(\left[ { - {\pi \over 2};{\pi \over 2}} \right].\)

c. Vẽ đồ thị của hàm số \(y = 2\sin 2x\).

Xem lời giải

Câu 7 trang 16 SGK Đại số và Giải tích 11 Nâng cao

Bài 7. Xét tính chẵn – lẻ của mỗi hàm số sau :

a.  \(y = \cos \left( {x - {\pi \over 4}} \right)\)

b.  \(y = \tan \left| x \right|\)

c.  \(y = \tan x - \sin 2x.\)

Xem lời giải

Câu 8 trang 16 SGK Đại số và Giải tích 11 Nâng cao

Bài 8. Cho các hàm số sau :

a. \(y = - {\sin ^2}x\)

b.  \(y = 3{\tan ^2}x + 1\)

c. \(y = \sin x\cos x\)

d.  \(y = \sin x\cos x + {{\sqrt 3 } \over 2}\cos 2x\)

Chứng minh rằng mỗi hàm số \(y = f(x)\) đó đều có tính chất :

\(f(x + kπ) = f(x)\) với \(k \in\mathbb Z\), \(x\) thuộc tập xác định của hàm số \(f\).

Xem lời giải

Câu 9 trang 17 SGK Đại số và Giải tích 11 Nâng cao
Bài 9. Cho hàm số \(y = f(x) = A\sin(ωx + ∝)\) (\(A, ω\) và \(∝\) là những hằng số ; \(A\) và \(ω\) khác \(0\)). Chứng minh rằng với mỗi số nguyên \(k\)), ta có \(f\left( {x + k.{{2\pi } \over \omega }} \right) = f\left( x \right)\) với mọi \(x\).GiảiVới \(k \in \mathbb Z\) ta có :\(\eqalign{
& f\left( {x + k.{{2\pi } \over \omega }} \right) = A\sin \left[ {\omega \left( {x + k{{2\pi } \over \omega }} \right) + \alpha } \right] \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = A\sin \left( {\omega x + \alpha + k2\pi } \right) = A\sin \left( {\omega x + \alpha } \right) = f\left( x \right) \cr} \)

Xem lời giải

Câu 10 trang 17 SGK Đại số và Giải tích 11 Nâng cao

Bài 10. Chứng minh rằng mọi giao điểm của đường thẳng xác định bởi phương trình \(y = {x \over 3}\) với đồ thị của hàm số \(y = \sin x\) đều cách gốc tọa độ một khoảng nhỏ hơn  \(\sqrt {10} \)

Xem lời giải

Câu 11 trang 17 SGK Đại số và Giải tích 11 Nâng cao

Bài 11. Từ đồ thị của hàm số \(y = \sin x\), hãy suy ra đồ thị của các hàm số sau và vẽ đồ thị của các hàm số đó : a. \(y = -\sin x\) b. \(y = \left| {\sin x} \right|\) c. \(y = \sin|x|\)

a. \(y = -\sin x\)

b.  \(y = \left| {\sin x} \right|\)

c. \(y = \sin|x|\)


Xem lời giải

Câu 12 trang 17 SGK Đại số và Giải tích 11 Nâng cao

Bài 12. a. Từ đồ thị của hàm số \(y = \cos x\), hãy suy ra đồ thị của các hàm số sau và vẽ đồ thị của các hàm số đó :

\(y = \cos x + 2\)

\(y = \cos \left( {x - {\pi \over 4}} \right)\)

b. Hỏi mỗi hàm số đó có phải là hàm số tuần hoàn không ?

Xem lời giải

Câu 13 trang 17 SGK Đại số và Giải tích 11 Nâng cao

Bài 13. Xét hàm số  \(y = f\left( x \right) = \cos {x \over 2}\)

a. Chứng minh rằng với mỗi số nguyên \(k\), \(f(x + k4π) = f(x)\) với mọi \(x\).

b. Lập bảng biến thiên của hàm số \(y = \cos {x \over 2}\) trên đoạn \([-2π ; 2π]\).

c. Vẽ đồ thị của các hàm số \(y = \cos x\) và \(y = \cos {x \over 2}\) trong cùng một hệ trục tọa độ vuông góc \(Oxy\).

d. Trong mặt phẳng tọa độ \(Oxy\), xét phép biến hình \(F\) biến mỗi điểm \((x ; y)\) thành điểm \((x'; y')\) sao cho \(x'= 2x\) và \(y'= y\). Chứng minh rằng F biến đồ thị của hàm số \(y = \cos x\) thành đồ thị của hàm số  \(y = \cos {x \over 2}.\) 

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”