Trong không gian \(Oxyz\), cho một điểm \(M\). Hãy phân tích vecto \(\overrightarrow {OM} \) theo ba vecto không đồng phẳng \(\overrightarrow i ;\,\overrightarrow j ;\,\overrightarrow k \) đã cho trên các trục \(Ox, Oy, Oz\).
Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có đỉnh A trùng với gốc O, có \(\overrightarrow {AB} ;\,\overrightarrow {AD} ;\,\overrightarrow {{\rm{AA}}'} \) theo thứ tự cùng hướng với \(\overrightarrow i ;\,\overline j ;\,\overrightarrow k \) và có AB = a, AD = b, AA’ = c. Hãy tính tọa độ các vecto \(\overrightarrow {AB} ;\,\overrightarrow {AC} ;\,\overrightarrow {AC'} ;\,\overrightarrow {AM} \) với M là trung điểm của cạnh C’D’.
Với hệ tọa độ \(Oxyz\) trong không gian, cho \(\overrightarrow a = (3,0,1);\,\overrightarrow b = (1, - 1, - 2);\,\overrightarrow c = (2,1, - 1)\). Hãy tính \(\overrightarrow a .(\overrightarrow b + \overrightarrow c );\,\,|\overrightarrow a + \overrightarrow b |\)
Viết phương trình mặt cầu tâm \(I(1; -2; 3)\) có bán kính \(r = 5\).
Cho ba vectơ \(\overrightarrow a \left( {2; - 5;3} \right),\,\,\overrightarrow b \left( {0;2; - 1} \right),\,\,\overrightarrow c \left( {1;7;2} \right)\)
a) Tính tọa độ của vectơ \(\overrightarrow{d}=4.\overrightarrow{a}-\dfrac{1}{3}\overrightarrow{b}+3\overrightarrow{c}\).
b) Tính tọa độ của vectơ \(\overrightarrow{e}=\overrightarrow{a}-4\overrightarrow{b}-2\overrightarrow{c}\).
Cho ba điểm \(A = (1; -1; 1), B = (0; 1; 2), C = (1; 0; 1)\). Tìm tọa độ trọng tâm \(G\) của tam giác \(ABC\).
Cho hình hộp \(ABCD.A'B'C'D'\) biết \(A = (1; 0; 1), B = (2; 1; 2), D = (1; -1; 1)\), \(C' (4; 5; -5)\). Tính tọa độ các đỉnh còn lại của hình hộp.
Tính:
a) \(\overrightarrow{a}.\overrightarrow{b}\) với \(\overrightarrow{a}(3; 0; -6)\), \(\overrightarrow{b}(2; -4; 0)\).
b) \(\overrightarrow{c}.\overrightarrow{d}\) với \(\overrightarrow{c}(1; -5; 2)\), \(\overrightarrow{d}(4; 3; -5)\).
Tìm tâm và bán kính của các mặt cầu có phương trình sau đây:
a) \({x^2} + {\rm{ }}{y^{2}} + {\rm{ }}{z^2}-{\rm{ }}8x{\rm{ }} - {\rm{ }}2y{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\);
b) \(3{x^2} + {\rm{ }}3{y^2} + {\rm{ }}3{z^2}-{\rm{ }}6x{\rm{ }} + {\rm{ }}8y{\rm{ }} + {\rm{ }}15z{\rm{ }}-{\rm{ }}3{\rm{ }} = {\rm{ }}0\)
Lập phương trình mặt cầu trong hai trường hợp sau đây:
a) Có đường kính \(AB\) với \(A(4 ; -3 ; 7), B(2 ; 1 ; 3)\)
b) Đi qua điểm \(A = (5; -2; 1)\) và có tâm \(C(3; -3; 1)\)