Bài 1. Hệ tọa độ trong không gian

Bài Tập và lời giải

Câu hỏi 1 trang 63 SGK Hình học 12

Trong không gian \(Oxyz\), cho một điểm \(M\). Hãy phân tích vecto \(\overrightarrow {OM} \) theo ba vecto không đồng phẳng \(\overrightarrow i ;\,\overrightarrow j ;\,\overrightarrow k \) đã cho trên các trục \(Ox, Oy, Oz\).

Xem lời giải

Câu hỏi 2 trang 64 SGK Hình học 12

Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có đỉnh A trùng với gốc O, có \(\overrightarrow {AB} ;\,\overrightarrow {AD} ;\,\overrightarrow {{\rm{AA}}'} \) theo thứ tự cùng hướng với \(\overrightarrow i ;\,\overline j ;\,\overrightarrow k \) và có AB = a, AD = b, AA’ = c. Hãy tính tọa độ các vecto \(\overrightarrow {AB} ;\,\overrightarrow {AC} ;\,\overrightarrow {AC'} ;\,\overrightarrow {AM} \) với M là trung điểm của cạnh C’D’.

Xem lời giải

Câu hỏi 3 trang 66 SGK Hình học 12

Với hệ tọa độ \(Oxyz\) trong không gian, cho \(\overrightarrow a  = (3,0,1);\,\overrightarrow b  = (1, - 1, - 2);\,\overrightarrow c  = (2,1, - 1)\). Hãy tính \(\overrightarrow a .(\overrightarrow b  + \overrightarrow c );\,\,|\overrightarrow a  + \overrightarrow b |\)

Xem lời giải

Câu hỏi 4 trang 67 SGK Hình học 12

Viết phương trình mặt cầu tâm \(I(1; -2; 3)\) có bán kính \(r = 5\).

Xem lời giải

Bài 1 trang 68 SGK Hình học 12

Cho ba vectơ \(\overrightarrow a \left( {2; - 5;3} \right),\,\,\overrightarrow b \left( {0;2; - 1} \right),\,\,\overrightarrow c \left( {1;7;2} \right)\)

a) Tính tọa độ của vectơ \(\overrightarrow{d}=4.\overrightarrow{a}-\dfrac{1}{3}\overrightarrow{b}+3\overrightarrow{c}\).

b) Tính tọa độ của vectơ \(\overrightarrow{e}=\overrightarrow{a}-4\overrightarrow{b}-2\overrightarrow{c}\).

Xem lời giải

Bài 2 trang 68 SGK Hình học 12

Cho ba điểm \(A = (1; -1; 1), B = (0; 1; 2), C = (1; 0; 1)\). Tìm tọa độ trọng tâm \(G\) của tam giác \(ABC\).

Xem lời giải

Bài 3 trang 68 SGK Hình học 12

Cho hình hộp \(ABCD.A'B'C'D'\) biết \(A = (1; 0; 1), B = (2; 1; 2), D = (1; -1; 1)\), \(C' (4; 5; -5)\). Tính tọa độ các đỉnh còn lại của hình hộp.

Xem lời giải

Bài 4 trang 68 SGK Hình học 12

Tính:

a) \(\overrightarrow{a}.\overrightarrow{b}\) với \(\overrightarrow{a}(3; 0; -6)\), \(\overrightarrow{b}(2; -4; 0)\).

b) \(\overrightarrow{c}.\overrightarrow{d}\) với \(\overrightarrow{c}(1; -5; 2)\), \(\overrightarrow{d}(4; 3; -5)\).

Xem lời giải

Bài 5 trang 68 SGK Hình học 12

Tìm tâm và bán kính của các mặt cầu có phương trình sau đây:

a) \({x^2} + {\rm{ }}{y^{2}} + {\rm{ }}{z^2}-{\rm{ }}8x{\rm{ }} - {\rm{ }}2y{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\);

b) \(3{x^2} + {\rm{ }}3{y^2} + {\rm{ }}3{z^2}-{\rm{ }}6x{\rm{ }} + {\rm{ }}8y{\rm{ }} + {\rm{ }}15z{\rm{ }}-{\rm{ }}3{\rm{ }} = {\rm{ }}0\)

Xem lời giải

Bài 6 trang 68 SGK Hình học 12

Lập phương trình mặt cầu trong hai trường hợp sau đây:

a) Có đường kính \(AB\) với \(A(4 ; -3 ; 7),  B(2 ; 1 ; 3)\)

b) Đi qua điểm \(A = (5; -2; 1)\) và có tâm \(C(3; -3; 1)\)

Xem lời giải