Bài 1. Khái niệm đạo hàm

Bài Tập và lời giải

Câu 1 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Tìm số gia của hàm số \(y = {x^2} - 1\) tại điểm x0 = 1 ứng với số gia ∆x, biết

a. ∆x = 1

b. ∆x = -0,1.

Xem lời giải

Câu 2 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0

a. \(y = 2x + 1,{x_0} = 2\)

b. \(y = {x^2} + 3x,{x_0} = 1\)

Xem lời giải

Câu 3 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0 (a là hằng số).

a. \(y = ax + 3\)

b. \(y = {1 \over 2}a{x^2}\)

Xem lời giải

Câu 4 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Cho parabol y = x2 và hai điểm A(2 ; 4) và B(2 + ∆x ; 4 + ∆y) trên parabol đó.

a. Tính hệ số góc của cát tuyến AB biết ∆x lần lượt bằng 1 ; 0,1 và 0,01.

b. Tính hệ số góc của tiếp tuyến của parabol đã cho tại điểm A.

Xem lời giải

Câu 5 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3},\) biết

a. Tiếp điểm có hoành độ bằng -1

b. Tiếp điểm có tung độ bằng 8

c. Hệ số góc của tiếp tuyến bằng 3.

Xem lời giải

Câu 6 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Một vật rơi tự do có phương trình chuyển động là \(S = {1 \over 2}g{t^2},\) trong đó \(g = 9,8m/{s^2}\) và t được tính bằng giây (s).

a. Tìm vận tốc trung bình trong khoảng thời gian từ t đến t + ∆t với độ chính xác 0,001, biết t = 5 và ∆t lần lượt bằng 0,1 ; 0,01 ; 0,001.

b. Tìm vận tốc tại thời điểm t = 5.

Xem lời giải

Câu 7 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Tìm đạo hàm của hàm số \(f\left( x \right) = {x^5}\) trên \(\mathbb R\) rồi suy ra \(f'\left( { - 1} \right),f'\left( { - 2} \right)\,\text{ và }\,f'\left( 2 \right)\)

Xem lời giải

Câu 8 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Tìm đạo hàm của mỗi hàm số sau trên R.

a. \(y = a{x^2}\) (a là hằng số)

b. \(y = {x^3} + 2\)

Xem lời giải

Câu 9 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Tính đạo hàm của mỗi hàm số sau :

a. \(y = {1 \over {2x - 1}}\,\text{ với }\,x \ne {1 \over 2}\)

b. \(y = \sqrt {3 - x} \) với \(x < 3\).

Xem lời giải

Câu 10 trang 195 SGK Đại số và Giải tích 11 Nâng cao

a. Tính \(f’(3)\) và \(f’(-4)\) nếu \(f(x) = {x^3}\)

b. Tính \(f’(1)\) và \(f’(9)\) nếu \(f\left( x \right) = \sqrt x \)

Xem lời giải

Câu 11 trang 195 SGK Đại số và Giải tích 11 Nâng cao

Cho hàm số \(y = f(x)\) có đạo hàm tại điểm x0 và đồ thị (G). Mệnh đề sau đây đúng hay sai ?

a. Nếu \(f'\left( {{x_0}} \right) = 0\) thì tiếp tuyến của (G) tại điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right)\) song song với trục hoành.

b. Nếu tiếp tuyến của G tại điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right)\) song song với trục hoành thì \(f'\left( {{x_0}} \right) = 0\) .

Xem lời giải

Câu 12 trang 195 SGK Đại số và Giải tích 11 Nâng cao

Hình 5.4 là đồ thị của hàm số y = f(x) trên khoảng (a ; b). Biết rằng tại các điểm M1, M2 và M3, đồ thị hàm số có tiếp tuyến được thể hiện trên hình vẽ. Dựa vào hình vẽ, em hãy nêu nhận xét về dấu của \(f'\left( {{x_1}} \right),f'\left( {{x_2}} \right)\,va\,f'\left( {{x_3}} \right)\)

Xem lời giải

Câu 13 trang 195 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng để đường thẳng y = ax + b là tiếp tuyến của đồ thị hàm số y = f(x) tại điểm \(\left( {{x_0};f\left( {{x_0}} \right)} \right)\), điều kiện cần và đủ là

\(\left\{ {\matrix{   {a = f'\left( {{x_0}} \right)}  \cr   {a{x_0} + b = f\left( {{x_0}} \right)}  \cr } } \right.\)

Xem lời giải

Câu 14 trang 195 SGK Đại số và Giải tích 11 Nâng cao

Cho hàm số \(y = \left| x \right|\)

a. Chứng minh rằng hàm số đã cho liên tục tại điểm x = 0

b. Tính đạo hàm của hàm số tại x = 0, nếu có.

c. Mệnh đề “Hàm số liên tục tại điểm x0 thì có đạo hàm tại x0 ” đúng hay sai ?

Xem lời giải

Câu 15 trang 195 SGK Đại số và Giải tích 11 Nâng cao

Hình 5.5 là đồ thị của hàm số y = f(x) xác định trên khoảng (a ; b). Dựa vào hình vẽ, hãy cho biết tại mỗi điểm x1, x2, x3 và x4 :

a. Hàm số có liên tục hay không ?

b. Hàm số có đạo hàm hay không ? Hãy tính đạo hàm nếu có.

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”