a) Hàm số xác định \( \Leftrightarrow \left\{ \begin{array}{l} {x^2} + 3x + 4 \ge 0\\- {x^2} + 8x - 15 \ge 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\forall x\; \in R\\{x^2} - 8x + 15 \le 0\end{array} \right.\\ \Leftrightarrow \left( {x - 3} \right)\left( {x - 5} \right) \le 0 \Leftrightarrow 3 \le x \le 5.\)
Vậy tập xác định của hàm số là: \(A = \left( {3;\;5} \right].\)
b) Ta có: \(B = \left\{ {x \in R|\;4 < x \le 5} \right\} = \left( {4;\;5} \right].\)
\(\Rightarrow A\backslash B = \left\{ {x|\;\;x \in A,\;\;x \notin B} \right\} \)\(= \left[ {3;\;4} \right].\)
\(\Rightarrow R\backslash \left( {A\backslash B} \right) = R\backslash \left[ {3;\;4} \right] = \left( { - \infty ;\;3} \right) \cup \)\(\left( {4;\; + \infty } \right).\)