a)
\(\begin{array}{*{20}{c}}{ - \begin{array}{*{20}{c}}{8923}\\{4157}\end{array}}\\\hline{\,\,\,\,\,4766}\end{array}\) Thử lại: \(\begin{array}{*{20}{c}}{ + \begin{array}{*{20}{c}}{4766}\\{4157}\end{array}}\\\hline{\,\,\,\;8923}\end{array}\)
\(\begin{array}{*{20}{c}}{ - \begin{array}{*{20}{c}}{27069}\\{\;\,9537}\end{array}}\\\hline{\,\,\,\,17532}\end{array}\) Thử lại: \(\begin{array}{*{20}{c}}{ + \begin{array}{*{20}{c}}{17532}\\{\;\,9537}\end{array}}\\\hline{\,\,\,\,27069}\end{array}\)
b)
+) \( \displaystyle{8 \over {15}} - {2 \over {15}} = {6 \over {15}}\)
Thử lại: \( \displaystyle{6 \over {15}} + {2 \over {15}} = {8 \over {15}}\)
+) \( \displaystyle{7 \over {12}} - {1 \over 6} = {7 \over {12}} - {2 \over {12}} = {5 \over {12}}\)
Thử lại: \( \displaystyle{5 \over {12}} + {1 \over 6} = {5 \over {12}} + {2 \over {12}} = {7 \over {12}}\)
+) \( \displaystyle1 - {3 \over 7} = {7 \over 7} - {3 \over 7} = {4 \over 7}\)
Thử lại: \( \displaystyle{4 \over 7} + {3 \over 7} = {7 \over 7} = 1\)
c)
\(\begin{array}{*{20}{c}}{ - \begin{array}{*{20}{c}}{7,284}\\{5,596}\end{array}}\\\hline{\,\,\,\,1,688}\end{array}\) Thử lại: \(\begin{array}{*{20}{c}}{ + \begin{array}{*{20}{c}}{1,688}\\{5,596}\end{array}}\\\hline{\,\,\,\,7,284}\end{array}\)
\(\begin{array}{*{20}{c}}{ - \begin{array}{*{20}{c}}{0,863}\\{0,298}\end{array}}\\\hline{\,\,\,\,\,0,565}\end{array}\) Thử lại: \(\begin{array}{*{20}{c}}{ + \begin{array}{*{20}{c}}{0,565}\\{0,298}\end{array}}\\\hline{\,\,\,\;0,863}\end{array}\)