Bài 1 trang 17 SGK Đại số và Giải tích 11

Hãy xác định các giá trị của \(x\) trên đoạn \(\displaystyle\left[ { - \pi ;{{3\pi } \over 2}} \right]\) để hàm số \(y = \tan x\);

a) Nhận giá trị bằng \(0\);

b) Nhận giá trị bằng \(1\);  

c) Nhận giá trị dương;

d) Nhận giá trị âm.  

Lời giải

Trong đoạn \(\displaystyle\left[ { - \pi ;{{3\pi } \over 2}} \right]\),

a) Trục hoành cắt đồ thị hàm số \(y = \tan x\) tại ba điểm có hoành độ \(- π ; 0 ; π\).

Vậy \(x = - π; x = 0 ; x = π\).

b) Đường thẳng \(y = 1\) cắt đồ thị \(y = \tan x\) tại ba điểm có hoành độ \(\displaystyle {\pi  \over 4};{\pi  \over 4} \pm \pi \).

Vậy \(\displaystyle x =  - {{3\pi } \over 4};\,\,x = {\pi  \over 4};\,\,x = {{5\pi } \over 4}\).

c) Trong các khoảng \(\displaystyle\left( { - \pi ; - {\pi  \over 2}} \right)\); \(\displaystyle\left( {0;{\pi  \over 2}} \right)\); \(\displaystyle \left( {\pi ;{{3\pi } \over 2}} \right)\), đồ thị hàm số nằm phía trên trục hoành.

Vậy \(\displaystyle x \in \left( { - \pi ; - {\pi  \over 2}} \right) \cup \left( {0;{\pi  \over 2}} \right) \cup \left( {\pi ;{{3\pi } \over 2}} \right)\).

d) Trong các khoảng \(\displaystyle\left( { - {\pi  \over 2};0} \right),\left( {{\pi  \over 2};\pi } \right)\), đồ thị hàm số nằm phía dưới trục hoành.

Vậy \(\displaystyle x \in \left( { - {\pi  \over 2};0} \right) \cup \left( {{\pi  \over 2};\pi } \right)\).