Đề bài
Cho các biểu thức đại số:
\(4x{y^2}\); \(3 - 2y\); \( - \dfrac{3}{5}{x^2}{y^3}x\); \(10x + y\);
\( 5(x + y)\); \(2{x^2}\left( { - \dfrac{1}{2}} \right){y^3}x\); \(2{x^2}y\); \(-2y\).
Hãy sắp xếp chúng thành hai nhóm:
Nhóm 1: Những biểu thức có chứa phép cộng, phép trừ.
Nhóm 2: Các biểu thức còn lại.
Đề bài
a) Cho biết phần hệ số, phần biến của mỗi đơn thức sau:
\(2,5{x^2}y\); \(0,25{x^2}{y^2}\).
b) Tính giá trị của mỗi đơn thức trên tại \(x = 1\) và \(y = -1\).
Đề bài
Tính tích các đơn thức sau rồi tìm bậc của đơn thức thu được:
a) \(-\dfrac{1}{3}{x^2}y\) và \(2x{y^3}\);
b) \(\dfrac{1}{4}{x^3}y\) và \( - 2{x^3}{y^5}\).
Đề bài
Hãy viết các đơn thức với biến \(x, y\) và có giá trị bằng \(9\) tại \(x = -1\) và \(y = 1\).
Đề bài
Bài 1: Nhân các đơn thức và cho biết bậc của đơn thức thu được:
a) \(6{a^2}b\left( { - {1 \over 3}b{c^2}} \right).\)
b) \(\left( { - {3 \over 2}{a^3}x{y^3}} \right)\left( {{3 \over 4}a{x^2}y} \right).\)
Bài 2: Thực hiện phép tính và cho biết phần hệ số; phần biến của kết quả:
a) \({( - 2x)^2}( - 3x).\) |
b) \({( - a)^3}(2a).\) |
Bài 3: Viết đơn thức dưới dạng lập phương:
a) \(27{a^3}{b^{12}}\). |
b) \( - {1 \over {125}}{x^9}{y^6}\). |
Bài 4: Tính giá trị của đơn thức:
\({\rm{A}} = {2 \over 5}{a^2}10ab,\) với \(a = {4 \over 5};b = - 4.\)
Đề bài
Bài 1: Tìm phần hệ số và phần biến của đơn thức:
a) \( - x{y^2}z;\) |
b) \(( - 3b{a^2})\left( {{1 \over 9}{c^2}a} \right).\) |
Bài 2: Tìm giá trị của biểu thức:
a) \( - {2 \over 3}{m^2}npm,\) tại \(m = 2;n = 6;p = 7;\)
b) \( - \left( {{1 \over 3}{a^2}} \right)( - 3{a^2}b),\) tại \(a = - 2;b = {5 \over 7}.\)
Bài 3: Viết đơn thức dưới dạng bình phương của đơn thức khác:
a) \(16{x^2};\) |
b) \(81{x^4}{y^2}.\) |
Đề bài
Bài 1: Nhân đơn thức:
a) \(\left( { - {1 \over 3}{m^2}} \right)( - 24n)(4mn).\)
b) \((5a)({a^2}{b^2})( - 2b)( - 3a).\)
Bài 2: Tính giá trị của biểu thức:
a) \(12a{b^2};\) tại \(a = - {1 \over 3};b = - {1 \over 6}.\)
b) \(\left( { - {1 \over 2}x{y^2}} \right).\left( {{2 \over 3}{x^3}} \right)\); tại \(x = 2;y = {1 \over 4}.\)
Bài 3: Tìm bậc của đơn thức:
a) \({\left( {{1 \over 2}x{y^2}} \right)^2}.\) |
b) \({( - 3{x^3}y)^2}.\) |
Đề bài
Bài 1: Thực hiện phép tính và tìm bậc của đơn thức ở kết quả.
a) \(P = ( - 13{a^2}bc)( - 5a{b^2}c)( - 0,4ab{c^3});\)
b) \(Q = ( - a)(3b)(4{a^2}b)(5a{b^2}).\)
Bài 2: Viết đơn thức dưới dạng một lập phương của đơn thức khác:
a) \({\rm{ - 8}}{a^9}{b^6};\) |
b) \( - 0,027{x^3}{y^{15}}\). |
Bài 3: Tính giá trị đơn thức:
a) \(A = {1 \over 4}{a^3}{b^2}c\) tại \(a = 4;b = {1 \over 4};c = - 3.\)
b) \(B = {( - 2{a^2}b)^2}{( - {a^2}{b^3})^3},\) tại \(a = - 1;b = 2.\)
Đề bài
Bài 1: Viết dưới dạng thu gọn và tìm bậc của đơn thức:
a) \(P = {2^3}{x^2}y.{( - 3)^2}xy;\)
b) \(Q = ( - 4{a^2}b).( - 7a{b^2}).\)
Bài 2: Viết đơn thức dưới dạng bình phương của đơn thức khác:
a) \(9{x^6}{y^2}\); |
b) \(16{x^8}{y^4}\). |
Bài 3: Tính giá trị của đơn thức:
a) \(A = - {1 \over 2}{a^2}{b^3}\) tại \(a = - 2;b = - 1\).
b) \(B = {1 \over 4}{({a^2}{b^3})^2}.(2ab)\) tại \(a = - 1;b = 2.\)