a) Ta có: \(\overrightarrow {AB} = \overrightarrow {AB} \Rightarrow {T_{\overrightarrow {AB} }}\left( A \right) = B\), \(\overrightarrow {OC} = \overrightarrow {AB} \Rightarrow {T_{\overrightarrow {AB} }}\left( O \right) = C\), \(\overrightarrow {FO} = \overrightarrow {AB} \Rightarrow {T_{\overrightarrow {AB} }}\left( F \right) = O\).
Do đó \({T_{\overrightarrow {AB} }}\left( {\Delta AOF} \right) = \Delta BCO\).
b) Theo tính chất hình lục giác đều thì:
+) \(A,C\) đối xứng nhau qua \(BE\).
+) \(O\) đối xứng với chính nó qua \(BE\).
+) \(F,D\) đối xứng nhau qua \(BE\).
Từ đó ta có:
\(\left\{ \begin{array}{l}{D_{BE}}\left( A \right) = C\\{D_{BE}}\left( O \right) = O\\{D_{BE}}\left( F \right) = D\end{array} \right. \) \(\Rightarrow {D_{BE}}\left( {\Delta AOF} \right) = COD\)
c) Ta có: \(\left( {\overrightarrow {OA} ,\overrightarrow {OE} } \right) = \widehat {AOE} = {120^0}\), \(\left( {\overrightarrow {OF} ,\overrightarrow {OD} } \right) = \widehat {FOD} = {120^0}\).
Do đó \(\left\{ \begin{array}{l}{Q_{\left( {O;{{120}^0}} \right)}}\left( A \right) = E\\{Q_{\left( {O;{{120}^0}} \right)}}\left( O \right) = O\\{Q_{\left( {O;{{120}^0}} \right)}}\left( F \right) = D\end{array} \right. \\\Rightarrow {Q_{\left( {O;{{120}^0}} \right)}}\left( {\Delta AOF} \right) = \Delta EOD\)