a) Ta có: \({u_1} = \dfrac{1}{{{2^1} - 1}} = 1\); \({u_2} = \dfrac{2}{{{2^2} - 1}} = \dfrac{2}{3}\); \({u_3} = \dfrac{3}{{{2^3} - 1}} = \dfrac{3}{7}\); \({u_4} = \dfrac{4}{{{2^4} - 1}} = \dfrac{4}{{15}}\); \({u_5} = \dfrac{5}{{{2^5} - 1}} = \dfrac{5}{{31}}\)
Năm số hạng đầu của dãy số là:
\(u_1= 1\); \(u_2= \dfrac{2}{3}\), \( u_{3}=\dfrac{3}{7}; u_{4}=\dfrac{4}{15};u_{5}=\dfrac{5}{31}\)
b) Ta có: \({u_1} = \dfrac{{{2^1} - 1}}{{{2^1} + 1}} = \dfrac{1}{3}\); \({u_2} = \dfrac{{{2^2} - 1}}{{{2^2} + 1}} = \dfrac{3}{5}\); \({u_3} = \dfrac{{{2^3} - 1}}{{{2^3} + 1}} = \dfrac{7}{9}\); \({u_4} = \dfrac{{{2^4} - 1}}{{{2^4} + 1}} = \dfrac{{15}}{{17}}\); \({u_5} = \dfrac{{{2^5} - 1}}{{{2^5} + 1}} = \dfrac{{31}}{{33}}\).
Năm số hạng đầu của dãy số là \( u_{1}=\dfrac{1}{3},u_{2}=\dfrac{3}{5};u_{3}=\dfrac{7}{9};u_{4}=\dfrac{15}{17};u_{5}=\dfrac{31}{33}\)
c) Ta có: \({u_1} = {\left( {1 + \dfrac{1}{1}} \right)^1} = 2\), \({u_2} = {\left( {1 + \dfrac{1}{2}} \right)^2} = \dfrac{9}{4}\); \({u_3} = {\left( {1 + \dfrac{1}{3}} \right)^3} = \dfrac{{64}}{{27}}\); \({u_4} = {\left( {1 + \dfrac{1}{4}} \right)^4} = \dfrac{{625}}{{256}}\); \({u_5} = {\left( {1 + \dfrac{1}{5}} \right)^5} = \dfrac{{7776}}{{3125}}\).
Năm số hạng đầu của dãy số là
\(u_1=2\); \( u_{2}=\dfrac{9}{4};u_{3}=\dfrac{64}{27};u_{4}=\dfrac{625}{256};u_{5}=\dfrac{7776}{3125}\)
d) Ta có: \({u_1} = \dfrac{1}{{\sqrt {{1^2} + 1} }} = \dfrac{1}{{\sqrt 2 }}\), \({u_2} = \dfrac{2}{{\sqrt {{2^2} + 1} }} = \dfrac{2}{{\sqrt 5 }}\), \({u_3} = \dfrac{3}{{\sqrt {{3^2} + 1} }} = \dfrac{3}{{\sqrt {10} }}\), \({u_4} = \dfrac{4}{{\sqrt {{4^2} + 1} }} = \dfrac{4}{{\sqrt {17} }}\), \({u_5} = \dfrac{5}{{\sqrt {{5^2} + 1} }} = \dfrac{5}{{\sqrt {26} }}\).
Năm số hạng đầu của dãy số là
\( u_{1}=\dfrac{1}{\sqrt{2}};u_{2}=\dfrac{2}{\sqrt{5}};u_{3}=\dfrac{3}{\sqrt{10}};\) \(u_{4}=\dfrac{4}{\sqrt{17}};u_{5}=\dfrac{5}{\sqrt{26}}\)