Bài 1 trang 99 SGK Toán 9 tập 1

Cho hình chữ nhật \(ABCD\) có \(AB=12cm,\ BC=5cm\). Chứng minh rằng bốn điểm \(A,\ B,\ C,\ D\) thuộc cùng một đường tròn. Tính bán kính của đường tròn đó. 

Lời giải

 

Gọi \(O\) là giao điểm hai đường chéo của hình chữ nhật, ta có \(OA = OB = OC = OD = R\).

Suy ra bốn điểm \(A,\ B,\ C,\ D\) cách đều điểm \(O\) nên bốn điểm này cùng thuộc đường tròn tâm \(O\).

Xét tam giác \(ABC\) vuông tại \(B\), áp dụng định lí Pytago, ta có:

\(AC^{2}=AB^{2}+BC^{2}=12^{2}+5^{2}=169\)

\(\Rightarrow AC=\sqrt{169}=13\,cm\) 

Bán kính của đường tròn là: \(R=OB=OA=OC=OD=\dfrac{AC}{2}\)\(\,=\dfrac{13}{2}=6,5\,cm.\)

 


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”