Bài 10 trang 111 SGK Toán 7 tập 1

Đề bài

 Trong các hình 63, 64 các tam giác nào bằng nhau (Các cạnh bằng nhau được đánh dấu bởi những kí hiệu giống nhau). Kể tên các đỉnh tương ứng của các tam giác bằng nhau đó. Viết kí hiệu về sự bằng nhau của các tam giác đó.

Lời giải

Hình 63 ta có: 

\(\widehat{A}=\widehat{I}=80^0\),

\(\widehat{C}=\widehat{N}=30^0\)

\(\widehat{B}=\widehat{M}=180^0-(80^0+30^0)=70^0\)

\(AB=IM, AC=IN, BC=MN\).

Suy ra \(∆ABC=∆IMN\)

Hình 64 ta có:

\(\widehat {RQH} = \widehat {QRP} = {80^0}\)

Áp dụng đinh lí tổng các góc của một tam giác vào \(\Delta QHR\) ta có:

\(\eqalign{
& \widehat {QHR} + \widehat {HRQ} + \widehat {RQH} = {180^o} \cr
& \Rightarrow \widehat {HRQ} = {180^o} - \left( {\widehat {QHR} + \widehat {RQH}} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\; = {180^o} - \left( {{{40}^o} + {{80}^o}} \right) = {60^o} \cr} \)

\(\Rightarrow \widehat {HRQ} = \widehat {PQR} = {60^o}\)

Áp dụng đinh lí tổng các góc của một tam giác vào \(\Delta PQR\) ta có:

\(\eqalign{
& \widehat {PQR} + \widehat {QRP} + \widehat {RPQ} = {180^o} \cr
& \Rightarrow \widehat {RPQ} = {180^o} - \left( {\widehat {PQR} + \widehat {QRP}} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {180^o} - \left( {{{60}^o} + {{80}^o}} \right) = {40^o} \cr} \)

\( \Rightarrow \widehat {RPQ} = \widehat {QHR} = {40^o}\)

\(QH= RP, HR= PQ, QR=RQ\).

Suy ra \(∆HQR=∆PRQ\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”