Gọi \(I\) là tâm mặt cầu ngoại tiếp hình chóp tam giác \(S.ABC\). Hạ \(IJ\) vuông góc \((SAB)\), vì \(I\) cách đều \(3\) điểm \(S, A, B\) nên \(J\) cũng cách đều \(3\) điểm \(S, A, B\).
Vì tam giác \(SAB\) vuông đỉnh \(S\) nên \(J\) là trung điểm của \(AB\).
Ta có \(SJ ={1 \over 2}AB = {1 \over 2}\sqrt {{a^2} + {b^2}}\)
Do \(SC\) vuông góc \((SAB)\) nên \(IJ // SC\).
Gọi \(H\) là trung điểm \(SC\), ta có \(SH = IJ = {c \over 2}\).
Do vậy, \(I{S^2} = I{J^2} + S{J^2} = {{({a^2} + {b^2} + {c^2})} \over 4}\) và bán kính hình cầu ngoại tiếp \(S.ABC\) là
\(R = IS = {1 \over 2}\sqrt {{a^2} + {b^2} + {c^2}} \)
Diện tích mặt cầu là:
\(S = 4\pi {R^2} = \pi ({a^2} + {b^2} + {c^2})\)