Bài 10 trang 71 SGK Toán 9 tập 2

a) Vẽ đường tròn tâm \(O\) bán kính \(R = 2\) cm. Nêu cách vẽ cung \(\overparen{AB}\) có số đo bằng \(60^0\). Hỏi dây \(AB\) dài bao nhiêu xentimet?

b) Làm thế nào để chia được đường tròn thành sáu cung bằng nhau như trên hình 12.

Lời giải

a) Vẽ đường tròn \((O; R)\). Vẽ góc ở tâm có số đo  \(60^0\). Góc này là góc ở tâm chắn \(\overparen{AB}\) có số đo  \(60^0\) (hình a).

Tam giác \(AOB\) cân có \(\widehat{O}=60^0\) nên AOB là tam giác đều, suy ra \(AB = R\). 

b) Theo câu a, ta có góc ở tâm bằng  \(sđ\overparen{AB}=60^0\). Số đo góc ở tâm vẽ được theo cách này là \(360^0:60^0= 6\). Suy ra được \(6\) cung tròn bằng nhau trên đường tròn.

Từ đó suy ra cách vẽ như sau:

Vẽ \(6\) dây cung bằng nhau và bằng bán kính \(R\):

\(\overparen{{A_1}{A_2}} = \overparen{{A_2}{A_3}} = \overparen{{A_3}{A_4}}\)\(= \overparen{{A_4}{A_5}} = \overparen{{A_5}{A_6}} = \overparen{{A_6}{A_1}}\)

\(= {\rm{ }}R\)

Từ đó suy ra \(6\) cung bằng nhau. (hình b)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”