Xét \(\Delta ADB\) có \(MN // AB\) (gt)
Theo hệ quả định lí Ta-lét ta có:
\(\displaystyle{{DN} \over {DB}} = {{MN} \over {AB}}\) (1)
Xét \(\Delta ACB\) có \(PQ // AB\) (gt)
Theo hệ quả định lí Ta-lét ta có:
\(\displaystyle{{CQ} \over {CB}} = {{PQ} \over {AB}}\) (2)
Lại có: \(NQ // AB\) (gt)
\(AB // CD\) (gt)
Suy ra: \(NQ // CD\) (hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau).
Xét \(\Delta BDC\) có \(NQ // CD\) (chứng minh trên)
Theo định lí Ta-lét ta có:
\(\displaystyle {{DN} \over {DB}} = {{CQ} \over {CB}}\) (3)
Từ (1), (2) và (3) suy ra: \(\displaystyle {{MN} \over {AB}} = {{PQ} \over {AB}}\) hay \(MN = PQ.\)