Số nghịch đảo của \(-2\) là \(\displaystyle {1 \over { - 2}}.\)
Ta có thể viết như sau :
\(\displaystyle {1 \over { - 2}} = {{ - 1} \over 2} = {{ - 6} \over {12}} \)\(\displaystyle = {{\left( { - 3} \right) + \left( { - 2} \right) + \left( { - 1} \right)} \over {12}} \)\(\displaystyle = {{ - 1} \over 4} + {{ - 1} \over 6} + {{ - 1} \over {12}} \)\(\displaystyle = {1 \over { - 4}} + {1 \over { - 6}} + {1 \over { - 12}}\)
Ta có \(\displaystyle {1 \over { - 4}}\) là nghịch đảo của \(-4\); \(\displaystyle {1 \over { - 6}}\) là nghịch đảo của \(-6\); \(\displaystyle {1 \over { - 12}}\) là nghịch đảo của \(-12.\)
Vậy số nghịch đảo của \(-2\) được viết dưới dạng tổng nghịch đảo của ba số nguyên là \(-4\;;\; -6\;;\; -12.\)