Bài 107 trang 93 SBT toán 8 tập 1

Đề bài

Chứng minh rằng trong hình chữ nhật:

a) Giao điểm của hai đường chéo là tâm đối xứng của hình.

b) Hai đường thẳng đi qua trung điểm của hai cạnh đối là hai trục đối xứng của hình.

Lời giải

a) Gọi \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD.\)

Vì hình chữ nhật là một hình bình hành nên điểm \(O\) là tâm đối xứng của nó.

b) Ta biết trong hình thang cân đường thẳng đi qua trung điểm của hai đáy là trục đối xứng của nó.

Theo định nghĩa ta có hình chữ nhật cũng là một hình thang cân. Nếu ta xem hình chữ nhật \(ABCD\) là hình thang cân có hai cạnh đáy \(AB\) và \(CD\) thì đường thẳng \({d_1}\) đi qua trung điểm của \(AB\) và \(CD\) là trục đối xứng của hình chữ nhật \(ABCD.\)

Nếu ta xem hình chữ nhật \(ABCD\) là hình thang cân có hai đáy là \(AD\) và \(BC\) nên đường thẳng \({d_2}\) đi qua trung điểm của \(AD\) và \(BC\) là trục đối xứng của hình chữ nhật \(ABCD.\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”