a) Gọi \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD.\)
Vì hình chữ nhật là một hình bình hành nên điểm \(O\) là tâm đối xứng của nó.
b) Ta biết trong hình thang cân đường thẳng đi qua trung điểm của hai đáy là trục đối xứng của nó.
Theo định nghĩa ta có hình chữ nhật cũng là một hình thang cân. Nếu ta xem hình chữ nhật \(ABCD\) là hình thang cân có hai cạnh đáy \(AB\) và \(CD\) thì đường thẳng \({d_1}\) đi qua trung điểm của \(AB\) và \(CD\) là trục đối xứng của hình chữ nhật \(ABCD.\)
Nếu ta xem hình chữ nhật \(ABCD\) là hình thang cân có hai đáy là \(AD\) và \(BC\) nên đường thẳng \({d_2}\) đi qua trung điểm của \(AD\) và \(BC\) là trục đối xứng của hình chữ nhật \(ABCD.\)