Vẽ \(OM \bot CD\)
Vì OM là một phần đường kính và CD là dây của đường tròn nên ta có M là trung điểm CD hay \( MC=MD\) (1) (định lý)
Tứ giác \(AHKB\) có \(AH \bot HK;\ BK \bot HK \Rightarrow HA // BK\).
Suy ra tứ giác \(AHKB\) là hình thang.
Xét hình thang \(AHKB\), ta có:
\(OM // AH //BK\) (cùng vuông góc với \(CD\))
mà \(AO=BO=\dfrac{AB}{2}\)
\(\Rightarrow MO\) là đường trung bình của hình thang \(AHKB\).
\(\Rightarrow MH=MK\) (2)
Từ (1) và (2) \(\Rightarrow MH-MC=MK-MD \Leftrightarrow CH=DK\) (đpcm)
Nhận xét: Kết quả của bài toán trên không thay đổi nếu ta đổi chỗ hai điểm \(C\) và \(D\) cho nhau.