Bài 11 trang 104 SGK Toán 9 tập 1

Cho đường tròn \((O)\) đường kính \(AB\), dây \(CD\) không cắt đường kính \(AB\). Gọi \(H\) và \(K\) theo thứ tự là chân các đường vuông góc kẻ từ \(A\) và \(B\) đến \(CD\). Chứng minh rằng \(CH=DK\)

Gợi ý: Kẻ \(OM\) vuông góc với \(CD\).  

Lời giải

Vẽ \(OM \bot CD\) 

Vì OM là một phần đường kính và CD là dây của đường tròn nên ta có M là trung điểm CD hay \( MC=MD\)   (1) (định lý)

Tứ giác \(AHKB\) có \(AH \bot HK;\ BK \bot HK \Rightarrow HA // BK\).

Suy ra tứ giác \(AHKB\) là hình thang.  

Xét hình thang \(AHKB\), ta có:

\(OM // AH //BK\) (cùng vuông góc với \(CD\))

mà \(AO=BO=\dfrac{AB}{2}\)

\(\Rightarrow MO\) là đường trung bình của hình thang \(AHKB\).

\(\Rightarrow MH=MK\)   (2)

Từ (1) và (2)  \(\Rightarrow MH-MC=MK-MD \Leftrightarrow CH=DK\) (đpcm)

Nhận xét: Kết quả của bài toán trên không thay đổi nếu ta đổi chỗ hai điểm \(C\) và \(D\) cho nhau.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”