a) Ta có:
\(\lim {u_n} = \lim {n \over {{n^2} + 1}} = \lim {{{n^2}({1 \over n})} \over {{n^2}(1 + {1 \over {{n^2}}})}} \) \(= \lim {{{1 \over n}} \over {1 + {1 \over {{n^2}}}}} = {0 \over 1} = 0\)
b) Ta có:
\(\lim {\pi \over n} = 0 \Rightarrow \lim \cos {\pi \over n} = \cos 0 = 1\)
Vậy \(\lim {v_n} = \lim {n \over {{n^2} + 1}}\lim \cos {\pi \over n} \)
Ta có \(\lim \frac{n}{{{n^2} + 1}} = \lim \frac{{\frac{1}{n}}}{{1 + \frac{1}{{{n^2}}}}} = \frac{0}{1} = 0 \Rightarrow \lim {v_n} = 0.1 = 0\)