Bài 1.13 trang 21 SBT hình học 10

Cho tam giác \(ABC\) có trung tuyến \(AM\). Trên cạnh \(AC\) lấy hai điểm \(E\) và \(F\) sao cho \(AE = EF= FC\); \(BE\) cắt \(AM \) tại \(N\). Chứng minh \(\overrightarrow {NA} \) và \(\overrightarrow {NM} \) là hai vec tơ đối nhau.

Lời giải

\(FM // BE \) vì \(FM\) là đường trung bình của tam giác \(CEB\).

Ta có \(EA = EF\). Vậy \( EN\) là đường trung bình của tam giác \(AFM\).

Do đó \(N\) là trung điểm của \(AM\) và \(\overrightarrow {NA}  =  - \overrightarrow {NM} \).