Bài 115 trang 29 SBT toán 7 tập 1

Đề bài

Cho \(x\) là số hữu tỉ khác \(0,\) \(y\) là một số vô tỉ. Chứng tỏ rằng \(x + y\) và \(x.y\) là những số vô tỉ .

Lời giải

Giả sử \(x + y = z\) là một số hữu tỉ

\( \Rightarrow  y = z - x\) ta có \(z\) hữu tỉ, \(x\) hữu tỉ thì hiệu \(z - x\) là một số hữu tỉ.

\( \Rightarrow  y ∈\mathbb Q\) trái giả thiết \(y\) là số vô tỉ.

Vậy \(x + y\) là số vô tỉ.

Giả sử \(x.y  = z\) là một số hữu tỉ.

\( \Rightarrow  y = z: x\) mà \(x ∈\mathbb Q; z ∈\mathbb Q\) \( \Rightarrow  z: x ∈\mathbb Q\).

\( \Rightarrow  y ∈\mathbb Q\) trái giả thiết \(y\) là số vô tỉ.

Vậy \(xy\) là số vô tỉ.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”