Bài 1.19 trang 21 SBT hình học 10

Đề bài

Cho hình bình hành \(ABCD\). Gọi \(O\) là một điểm bất kì trên đường chéo \(AC\). Qua \(O\) kẻ các đường thẳng song song với các cạnh của hình bình hành. Các đường thẳng này cắt \(AB\) và \(DC\) lần lượt tại \(M\) và \(N\), cắt \(AD\) và \(BC\) lần lượt tại \(E\) và \(F\). Chứng minh rằng:

a) \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow {OB}  + \overrightarrow {OD} \);

b) \(\overrightarrow {BD}  = \overrightarrow {ME}  + \overrightarrow {FN} \).

Lời giải

a) \(\overrightarrow {AB}  = \overrightarrow {OB}  - \overrightarrow {OA} \); \(\overrightarrow {DC}  = \overrightarrow {OC}  - \overrightarrow {OD} \)

Vì \(\overrightarrow {AB}  = \overrightarrow {DC} \) nên ta có \(\overrightarrow {OB}  - \overrightarrow {OA}  = \overrightarrow {OC}  - \overrightarrow {OD} \)

Vậy \(\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow {OA}  + \overrightarrow {OC} \).

b)Tứ giác \(AMOE\) là hình bình hành nên ta có \(\overrightarrow {ME}  = \overrightarrow {MA}  + \overrightarrow {MO} \)(1)

Tứ giác \(OFCN\) là hình bình hành nên ta có \(\overrightarrow {FN}  = \overrightarrow {FO}  + \overrightarrow {FC} \)(2)

Từ (1) và (2) suy ra \(\overrightarrow {ME}  + \overrightarrow {FN}  = \overrightarrow {MA}  + \overrightarrow {MO}  + \overrightarrow {FO}  + \overrightarrow {FC} \)

=\((\overrightarrow {MA}  + \overrightarrow {FO} ) + (\overrightarrow {MO}  + \overrightarrow {FC} ) = \overrightarrow {BA}  + \overrightarrow {BC}  = \overrightarrow {BD} \)

(Vì \(\overrightarrow {FO}  = \overrightarrow {BM} ,\overrightarrow {MO}  = \overrightarrow {BF} \)).

Vậy \(\overrightarrow {BD}  = \overrightarrow {ME}  + \overrightarrow {FN} \)