a) Vì \(ABCD\) là hình thang cân có \(AB // CD \) nên \(AD=BC\); \(AC = BD\)
Xét \(∆ADC\) và \(∆BCD\) có:
\(AC = BD\) (chứng minh trên)
\(AD = BC\) (chứng minh trên)
\(CD\) cạnh chung
\( \Rightarrow ∆ADC = ∆BCD\) (c.c.c)
\( \Rightarrow \widehat {ACD} = \widehat {BDC}\) (hai góc tương ứng)
Hay \(\widehat {OCD} = \widehat {ODC}\)
Do đó \(\Delta OCD\) cân tại \(O\).
\( \Rightarrow OC = OD \) (tính chất tam giác cân)
Ta có: \(AC=OA+OC\)
\(BD=OB+OD\)
Mà \(AC=BD;OC=OD\) nên \(OA = OB\)
Do đó \(MD=NC= \dfrac{1}{2}AC = \dfrac{1}{2}BD\)
\(OD=MO+MD\)
\(OC=NO+NC\)
Mà \(OD=OC;MD=NC\) nên \(MO=NO\)
Lại có: \(MD = 3MO\) (gt) \(⇒ NC = 3NO\)
Xét \(\Delta OCD\) có \(\displaystyle {{MO} \over {MD}} = {{NO} \over {NC}} = {1 \over 3}\)
Theo định lí đảo của định lí Ta-lét ta có \(MN // CD\).
Ta có: \(OD = OM + MD = OM + 3OM \)\(\,= 4OM\)
\(\Delta OCD\) có \(MN // CD\)
Theo hệ quả định lí Ta-lét ta có:
\(\displaystyle {{OM} \over {OD}} = {{MN} \over {CD}}\)
\(\displaystyle \Rightarrow {{MN} \over {CD}} = {{OM} \over {4OM}} = {1 \over 4}\)
\(\displaystyle \Rightarrow MN = {1 \over 4}CD = {1 \over 4}.5,6 = 1,4\) (cm)
Ta có: \(MB = MD\) (vì \(M\) là trung điểm \(BD\))
Suy ra: \(MB = 3OM\) hay \(OB = 2OM\)
\( AB // CD\) (gt), \(MN // CD\) (cmt) suy ra \(MN // AB\).
Xét \(\Delta OAB\) có \(MN // AB\)
Theo hệ quả định lí Ta-lét ta có:
\(\displaystyle{{OM} \over {OB}} = {{MN} \over {AB}}\)
\( \Rightarrow \displaystyle{{MN} \over {AB}} = {{OM} \over {2OM}} = {1 \over 2}\)
\( \Rightarrow AB = 2MN = 2.1,4 = 2,8\) (cm)
b) Ta có: \(\displaystyle{{CD - AB} \over 2} = {{5,6 - 2,8} \over 2} = {{2,8} \over 2}\)\(\, = 1,4\) (cm)
Vậy \(\displaystyle MN = {{CD - AB} \over 2}\).