Trang chủ
Lớp 12 »
Môn Toán »
SGK Hình Học 12 »
Ôn tập chương 1: Khối đa diện
Cho khối chóp \(S.ABC\) có thể tích bằng \(V\). Gọi \(B’\) và \(C’\) lần lượt là trung điểm của \(SB\) và \(SC\), \(A’\) nằm trên \(SA\) sao cho \(\overrightarrow {SA} = 3\overrightarrow {SA'} \). Tính thể tích khối chóp \(S.A’B’C’\) theo \(V\).
Ta có: \(\dfrac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \dfrac{{SA'}}{{SA}}.\dfrac{{SB'}}{{SB}}.\dfrac{{SC'}}{{SC}}\)\( = \dfrac{1}{3}.\dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{{12}}\) \( \Rightarrow {V_{S.A'B'C'}} = \dfrac{1}{{12}}{V_{S.ABC}} = \dfrac{1}{{12}}V\)
Quote Of The Day
“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”