Ta có: \(\overparen{IA}= \overparen{IB}\) \((gt)\)
\( \Rightarrow IA = IB\) (\(2\) cung bằng nhau căng \(2\) dây bằng nhau)
\( \Rightarrow I\) nằm trên đường trung trực của \(AB\)
\(OA = OB\) (bán kính \((O)\))
\( \Rightarrow O\) nằm trên đường trung trực của \(AB\)
Suy ra: \(OI\) là đường trung trực của \(AB\)
\(H\) là trung điểm của \(AB,\) do đó \(OI\) đi qua trung điểm \(H\)
Vậy \(3\) điểm \(I, H, O\) thẳng hàng.