Bài 13 trang 101 SGK Hình học 12

Trong không gian \(Oxyz\), cho hai đường thẳng: 

\({d_1}:\,\,\left\{ \begin{array}{l}x = - 1 + 3t\\y = 1 + 2t\\z = 3 - 2t\end{array} \right.\,\,\,\,\,\,\,{d_2}:\left\{ \begin{array}{l}x = t'\\y = 1 + t'\\z = - 3 + 2t'\end{array} \right.\)

a) Chứng minh rằng d1 và d2  cùng thuộc một mặt phẳng.

b) Viết phương trình mặt phẳng đó.

Lời giải

a) Đường thẳng d1 đi qua điểm \(M_1(-1; 1; 3)\) và có VTCP \(\overrightarrow {{a_1}}  = (3;2; - 2)\)

    Đường thẳng d2 đi qua điểm \(M_2\)\((0; 1; -3)\) và có VTCP \(\overrightarrow {{a_2}} = (1; 1; 2)\).

Ta có \(\left[ {\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} } \right]= (6; -8; 1)\), \(\overrightarrow {{M_1}{M_2}}  = (1; 0; -6)\)

\( \Rightarrow \left[ {\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} } \right]\). \(\overrightarrow {{M_1}{M_2}}  = 0\)

Vậy ba vectơ \(\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} ,\overrightarrow {{M_1}{M_2}} \) đồng phẳng hay hai đường thẳng d1, d2 nằm cùng một mặt phẳng.

b) Gọi \((P)\) là mặt phẳng chứa d1 và d2.

Khi đó \((P)\) qua điểm \(M_1 (-1; 1; 3)\) và có vectơ pháp tuyến

\(\overrightarrow n  = \left[ {\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} } \right]= (6; -8; 1)\).

Phương trình mặt phẳng \((P)\) có dạng:

\(6(x + 1) - 8(y - 1) + (z - 3) = 0\)

\(\Leftrightarrow  6x - 8y + z + 11 = 0\)


Bài Tập và lời giải

Bài 64 trang 49 SBT toán 7 tập 2

Đề bài

Cho tam giác \(ABC.\) Tìm một điểm \(O\) cách đều ba điểm \(A, B, C.\)

Xem lời giải

Bài 65 trang 49 SBT toán 7 tập 2

Đề bài

Cho hình 13. Chứng minh rằng ba điểm \(B, K, C\) thẳng hàng. 

Xem lời giải

Bài 66 trang 49 SBT toán 7 tập 2

Đề bài

Dựa vào kết quả của bài 65, chứng minh rằng:

a) Các đường trung trực của tam giác vuông đi qua trung điểm của cạnh huyền.

b) Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền. 

Xem lời giải

Bài 67 trang 50 SBT toán 7 tập 2
Có một chi tiết máy (mà đường viền ngoài là đường tròn) bị gẫy (h.14). Hãy nêu cách xác định tâm của đường viền.

Xem lời giải

Bài 68 trang 50 SBT toán 7 tập 2
Cho tam giác \(ABC\) cân tại \(A,\) đường trung tuyến \(AM.\) Đường trung trực của \(AC\) cắt đường thẳng \(AM\) ở \(D.\) Chứng minh rằng \(DA = DB.\) 

Xem lời giải

Bài 69 trang 50 SBT toán 7 tập 2

Đề bài

Cho tam giác \(ABC\) có \(Â\) là góc tù. Các đường trung trực của \(AB\) và của \(AC\) cắt nhau ở \(O\) và cắt \(BC\) theo thứ tự ở \(D\) và \(E.\)

a) Các tam giác \(ABD, ACE\) là tam giác gì?

b) Đường tròn tâm \(O\) bán kính \(OA\) đi qua những điểm nào trong hình vẽ? 

Xem lời giải

Bài 8.1, 8.2, 8.3, 8.4 phần bài tập bổ sung trang 50 SBT toán 7 tập 2

Bài 8.1

Cho tam giác cân (không đều) \(ABC\) có \(AB = AC.\) Hai đường trung trực của hai cạnh \(AB, AC\) cắt nhau tại \(O.\) Khi đó khẳng định nào sau đây là đúng?

\(\left( A \right)OA > OB\)

\(\left( B \right)\widehat {AOB} > \widehat {AOC}\)

\(\left( C \right)AO \bot BC\)

(D) \(O\) cách đều ba cạnh của tam giác \(ABC\)

Xem lời giải