Tứ giác \(AECI\) có \(\widehat {EAI} + \widehat {ECI} = {90^o} + {90^o} = {180^o}\) do đó tứ giác \(AECI\) nội tiếp được.
Tứ giác \(BFCI\) có \(\widehat {FCI} + \widehat {IBF} = {90^o} + {90^o} = {180^o}\) do đó tứ giác \(BFCI\) nội tiếp được.
Xét \(\Delta IEF \) và \(\Delta CAB\) có:
\(\widehat {{E_1}} = \widehat {{A_1}}\) (hai góc nội tiếp cùng chắn cung \(CI\) của đường tròn ngoại tiếp tứ giác \(AECI\))
\(\widehat {{F_1}} = \widehat {{B_1}}\) (hai góc nội tiếp cùng chắn cung \(CI\) của đường tròn ngoại tiếp tứ giác \(BFCI\))
\( \Rightarrow \Delta IEF \backsim \Delta CAB\) (g.g).
\( \Rightarrow \widehat {EIF} = \widehat {ACB}\) (hai góc tương ứng).
Ta lại có \(\widehat {ACB} = {90^o}\) (góc nội tiếp chắn nửa đường tròn).
\(\Rightarrow \widehat {EIF} = {90^o}\).
Vậy tam giác \(IEF\) vuông tại \(I\).