Bài 13 trang 43 SGK Toán 9 tập 2

Cho các phương trình:

a) \({x^2} + 8x =  - 2\);                         b)\({x^2} + 2x = \dfrac{1}{3}.\)

Hãy cộng vào hai vế của mỗi phương trình cùng một số thích hợp để được một phương trình mà vế trái thành một bình phương.

Lời giải

a) Ta có:

\({x^2} + 8x =  - 2 \Leftrightarrow {x^2} + 2.x.4  =  - 2 \)  (1)

Cộng cả hai vế của phương trình (1) với \(4^2\) để vế trái trở thành hằng đẳng thức số \(1\), ta được:

\( x^2 + 2.x.4 +4^2 =  - 2 +4^2\)

\(\Leftrightarrow (x + 4)^2 = 14\)

b) Ta có:

\({x^2} + 2x = \dfrac{1}{3} \Leftrightarrow {x^2} + 2.x.1  = \dfrac{1}{3} \) (2)

Cộng cả hai vế của phương trình (2) với \(1^2\) để vế trái trở thành hằng đẳng thức số \(1\), ta được:

\(x^2+2.x.1+1^2=\dfrac{1}{3}+1^2\)

\(\Leftrightarrow x^2+2.x.1+1^2=\dfrac{4}{3}\)

\(\Leftrightarrow {(x + 1)^2} = \dfrac{4 }{3}\).   


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”