Ta có: \(y' = - 4{x^3} + 8x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 2 \end{array} \right.\).
\(y'' = - 12{x^2} + 8\) và \(y''\left( 0 \right) = 8 > 0\) nên \(x = 0\) là điểm cực đại của hàm số.
\(y''\left( { \pm \sqrt 2 } \right) = - 16 < 0\) nên \(x = \pm \sqrt 2 \) là điểm cực tiểu của hàm số.
Vậy hàm số có \(2\) điểm cực tiểu, \(1\) điểm cực đại.
Chọn B.