Bài 1.31 trang 32 SBT hình học 10

Cho hình bình hành \(ABCD\) có \(O\) là giao điểm của hai đường chéo. Chứng minh rằng với điểm \(M\) bất kì ta có \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO} \).

Lời giải

\(\overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MO} \)( Vì \(O\) là trung điểm của \(AC\))

\(\overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MO} \)( Vì \(O\) là trung điểm của \(BD\))

Vậy \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO} \)