Bài 133 trang 22 SBT toán 6 tập 1

Đề bài

Trong các số: \(5319; 3240; 831.\) 
\(a)\) Số nào chia hết cho \(3\) mà không chia hết cho \(9\) \(?\)
\(b)\) Số nào chia hết cho cả \(2; 3; 5; 9\) \(?\) 

Lời giải

\(a)\) Số \(5319\) có tổng các chữ số: \(5+3+1+9 =18\) 

Vì \(18\, ⋮ \,3\) và \(18\, ⋮ \,9\) nên số \(5319\) chia hết cho cả \(3\) và \(9\)

Số \(3240\) có tổng các chữ số: \(3+2+4+0 = 9\) 

Vì \( 9 \,⋮ \,3\) và \(9 \,⋮ \,9\) nên số \(3240\) chia hết cho cả \(3\) và \(9\)

Số \(831\) có tổng các chữ số : \(8+3+1+0 = 12\)

Vì \(12\, ⋮ \,3\) và \(12\) \(\not {\vdots} \) \(9\)

Nên số \(831\) chia hết cho \(3\) mà không chia hết cho \(9\)

\(b)\) Số chia hết cho \(2\) và cho \(5\) có chữ số tận cùng là \(0\)

Vậy số chia hết cho \(2, 3, 5, 9\) là \(3240.\) 


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”