Bài 1.33 trang 32 SBT hình học 10

Đề bài

Cho tứ giác \(ABCD\). Các điểm \(M, N , P\) và \(Q\) lần lượt là trung điểm của \(AB, BC, CD\) và \(DA\). Chứng minh rằng hai tam giác \(ANP\) và \(CMQ\) có cùng trọng tâm.

Lời giải

Gọi \(G \) là trọng tâm của tam giác \(ANP\).

Khi đó \(\overrightarrow {GA}  + \overrightarrow {GN}  + \overrightarrow {GP}  = \overrightarrow 0 \)

Ta có: \(\overrightarrow {GC}  + \overrightarrow {GM}  + \overrightarrow {GQ} \)\( = \overrightarrow {GA}  + \overrightarrow {AC}  + \overrightarrow {GN} \) \( + \overrightarrow {NM}  + \overrightarrow {GP}  + \overrightarrow {PQ} \) \( = (\overrightarrow {GA}  + \overrightarrow {GN}  + \overrightarrow {GP} ) + \overrightarrow {AC}  + (\overrightarrow {NM}  + \overrightarrow {PQ} )\)

\( = \overrightarrow {AC}  + \overrightarrow {CA}  = \overrightarrow 0 \)

(Vì \(\overrightarrow {NM}  = \dfrac{1}{2}\overrightarrow {CA} ,\overrightarrow {PQ}  = \dfrac{1}{2}\overrightarrow {CA} \) nên \(\overrightarrow {NM}  + \overrightarrow {PQ}  = \overrightarrow {CA} \)).

Vậy \(\overrightarrow {GC}  + \overrightarrow {GM}  + \overrightarrow {GQ}  = \overrightarrow 0 \)

Suy ra \(G\) là trọng tâm của tam giác \(CMQ\).