Gọi \(I\) là tâm mặt cầu nội tiếp tứ diện, \(V\)là thể tích tứ diện.
Ta có \(V = {V_{IBCD}} + {V_{ICDA}} + {V_{IDAB}} + {V_{IABC}}\)
Lại có \({V_{I.BCD}} = \dfrac{1}{3}{S_{BCD}}.r\); \({V_{I.CDA}} = \dfrac{1}{3}{S_{CDA}}.r\); \({V_{I.DAB}} = \dfrac{1}{3}{S_{DAB}}.r\); \({V_{I.ABC}} = \dfrac{1}{3}{S_{ABC}}.r\)
\( \Rightarrow 1 = \dfrac{{{V_{IBCD}}}}{V} + \dfrac{{{V_{ICDA}}}}{V} + \dfrac{{{V_{IDAB}}}}{V} + \dfrac{{{V_{IABC}}}}{V}\)
\( = \dfrac{{\dfrac{1}{3}r{S_{BCD}}}}{{\dfrac{1}{3}{h_A}{S_{BCD}}}} + \dfrac{{\dfrac{1}{3}r{S_{CDA}}}}{{\dfrac{1}{3}{h_B}{S_{CDA}}}}\) \( + \dfrac{{\dfrac{1}{3}r{S_{DAB}}}}{{\dfrac{1}{3}{h_C}{S_{DAB}}}} + \dfrac{{\dfrac{1}{3}r{S_{ABC}}}}{{\dfrac{1}{3}{h_D}{S_{ABC}}}}\)
\( = r\left( {\dfrac{1}{{{h_A}}} + \dfrac{1}{{{h_B}}} + \dfrac{1}{{{h_C}}} + \dfrac{1}{{{h_D}}}} \right)\)
\( \Rightarrow \dfrac{1}{r} = \dfrac{1}{{{h_A}}} + \dfrac{1}{{{h_B}}} + \dfrac{1}{{{h_C}}} + \dfrac{1}{{{h_D}}}\) (đpcm).