a) \(\sqrt {{1^3}} = \sqrt 1 = 1\)
\(\eqalign{
& \sqrt {{1^3} + {2^3}} = \sqrt {1 + 8} \cr&= \sqrt 9 = 3 = 1 + 2 \cr
& \sqrt {{1^3} + {2^3} + {3^3}} = \sqrt {1 + 8 + 27}\cr& = \sqrt {36} = 6 = 1 + 2 + 3 \cr} \)
b)
\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}}\cr& = \sqrt {1 + 8 + 27 + 64} \cr
& = \sqrt {100} = 10 = 1 + 2 + 3 + 4 \cr
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3} + {5^3}} \cr
& = \sqrt {1 + 8 + 27 + 64 + 125} = \sqrt {225} \cr} \)
\(\;\;= 15 = 1 + 2 + 3 + 4 + 5\)