Bài 14 trang 197 SBT toán 9 tập 2

Đề bài

Cho tứ giác \(ABCD\) nội tiếp nửa đường tròn đường kính \(AD.\) Hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(E .\) Kẻ \(EF\) vuông góc với \(AD.\) Gọi \(M\) là trung điểm của \(DE\). Chứng minh rằng:

a) Các tứ giác \(ABEF, DCEF\) nội tiếp được;

b) Tia \(CA\) là tia phân giác của góc \(BCF\);

c) Tứ giác \(BCMF\) nội tiếp được.

Lời giải

a) Ta có \(\widehat {ABD} = \widehat {ACD} = {90^o}\) (góc nội tiếp chắn nửa đường tròn).

Tứ giác \(ABEF\) có \(\widehat {ABE} + \widehat {AFE} = {90^o} + {90^o} = {180^o}\) nên tứ giác \(ABEF\) nội tiếp được.

Tứ giác \(DCEF\) có \(\widehat {DCE} + \widehat {DFE} = {90^o} + {90^o} = {180^o}\) nên tứ giác \(DCEF\) nội tiếp được.

b) \(\widehat {{C_1}} = \widehat {{D_1}}\) (hai góc nội tiếp cùng chắn cung nhỏ \(AB\))   (1)

\(\widehat {{C_2}} = \widehat {{D_1}}\) (hai góc nội tiếp cùng chắn cung \(EF\) của đường tròn ngoại tiếp tứ giác \(DCEF\))   (2)

Từ (1) và (2) ta có \(\widehat {{C_1}} = \widehat {{C_2}}\).

Vậy \(CA\) là tia phân giác của góc \(BCF\).

c) \(\Delta DEF\) vuông tại \(F\) có \(FM\) là đường trung tuyến ứng với cạnh huyền nên \(FM=MD=ME=\dfrac{1}{2}DE\).

\( \Rightarrow \Delta DMF\) cân tại \(M\).

\(\Rightarrow \widehat {{D_1}} = \widehat {MFD}\) (tính chất tam giác cân).

\(\widehat {BMF}\) là góc ngoài tại đỉnh \(M\) của \(\Delta DMF\) nên:

\(\widehat {BMF} = \widehat {{D_1}} + \widehat {MFD} = 2\widehat {{D_1}}\)    (3)

Theo câu b) ta có: \(\widehat {BCF} = \widehat {{C_1}} + \widehat {{C_2}} = 2\widehat {{D_1}}\)      (4)

Từ (3) và (4) suy ra \(\widehat {BMF} =\widehat {BCF}\).

Vậy \(C\) và \(M\) cùng nhìn \(BF\) dưới một góc bằng nhau nên tứ giác \(BCMF\) nội tiếp được.