Bài 14 trang 60 SGK Toán 7 tập 2

Đề bài

Đố : Vẽ tam giác \(PQR\) có \(PQ = PR =5\,cm\), \(QR = 6\,cm\). Lấy điểm \(M\) trên đường thẳng \(QR\) sao cho \(PM = 4,5\,cm\). Có mấy điểm \(M\) như vậy ?

Điểm \(M\) có nằm trên cạnh \(QR\) hay không ? Tại sao ?

Lời giải

* Vẽ hình:

- Vẽ tam giác \(PQR\) có \(PQ = PR = 5\,cm,\; QR = 6\,cm\).

+ Vẽ đoạn thẳng \(QR = 6\,cm\).

+ Vẽ cung tròn tâm \(Q\) và cung tròn tâm \(R\) bán kính \(5\,cm\). Hai cung tròn này cắt nhau tại \(P\).

+ Nối \(PQ\) và \(PR\) ta được tam giác cần vẽ.

- Vẽ điểm \(M\): Vẽ cung tròn tâm \(P\) bán kính \(4,5\,cm\) cắt đường thẳng \(QR\) tại \(M\).

* Chứng minh

\(∆PQR\) có \(PQ = PR = 5\,cm\) nên \(∆PQR\) cân tại \(P\). Từ \(P\) kẻ đường thẳng \(PH ⊥ QR\).

Gọi \(M\) là một điểm nằm trên đường thẳng \(QR\).

Ta có: \(MH, QH, RH\) lần lượt là hình chiếu của \(PM, PQ, PR\) trên \(QR\).

Vì \(PM = 4,5\,cm < PQ\) (hoặc \(PR\)) nên \(MH < QH, MH < RH\).

- Tương tự trên \(RH \) có \(MH < RH\) nên \(M\) nằm giữa hai điểm \(R\) và \(H\).

Do vậy có hai điểm \(M\) thỏa mãn điều kiện đề bài và điểm \(M\) này nằm trên cạnh \(QR\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”