Giả sử đường tròn \( (O)\) có đường IK và I là điểm chính giữa cung AB.
a) Vì \(I\) là điểm chính giữa của \(\overparen{AB}\), suy ra \(\overparen{IA}\) = \(\overparen{IB}\) \(⇒ IA = IB\)
Ta có: \(OA = OB =\) bán kính. Suy ra đường kính \(IK\) là đường trung trực của dây \(AB\). Vậy \(HA = HB\) (đpcm)
Mệnh đề đảo: Đường kính đi qua trung điểm của một dây thì đi qua điểm chính giữa của cung căng dây đó.
Chứng minh: Vì \(∆ AOB\) cân tại \(O\) và \(HA = HB\) nên \(OH\) là đường phân giác của góc \(\widehat{AOB}\). Suy ra \(\widehat {{O_1}} = \widehat {{O_2}}\)
Từ đó suy ra \(\overparen{IA}\) = \(\overparen{IB}\)
Tuy nhiên khi \(AB\) đi qua tâm thì điều này chưa chắc đúng vì nếu \(AB\) tạo với \(IK\) góc \(\widehat {AOI} = 30^\circ \Rightarrow \widehat {BOI} = 150^\circ \) \(\Rightarrow \overparen{IA}<\overparen{IB}\)
Vậy phải thêm điều kiện để mệnh đề đảo đúng là:
Đường kính đi qua trung điểm của một dây không đi qua tâm thì đi qua điểm chính giữa của cung căng dây đó.
b) Vì \(I\) là điểm chính giữa của \(\overparen{AB}\), suy ra \(\overparen{IA}\) = \(\overparen{IB}\) \(⇒ IA = IB\)
Ta có: \(OA = OB =\) bán kính. Suy ra đường kính \(IK\) là đường trung trực của dây \(AB\)
Nên \(OI\) hay \(IK\) là đường trung trực của dây \(AB\). Suy ra \(IK \bot AB\).
* Điều ngược lại: Đường kính vuông góc ở dây khi qua tâm thì đi qua hai điểm chính giữa của cung căng dây đó.
Kẻ đường kính \(KOI\) vuông góc với \(AB\).
Ta có \(OA = OB ⇒ ∆OAB\) cân tại \(O\)
Mà \(OH \bot AB\) nên \(OH\) là đường phân giác của \(\widehat{AOB}\) suy ra \(\widehat {{O_1}} = \widehat {{O_2}}\)
Ta có \(∆OAI = ∆OBI\) (c.g.c). Do đó \(AI = IB\). Suy ra \(\overparen{AI}\) = \(\overparen{IB}\).
Vậy \(I\) là điểm chính giữa của \(\overparen{AB}\)