+ Xét tứ giác \(ABCD\)
Nhận thấy \(AB // CD\)
\(⇒\) Tứ giác \(ABCD\) là hình thang.
Xét \(ΔACK\) vuông tại \(K\) ta có:
\(AC^2 = AK^2 + KC^2 = 4^2 + 1^2 = 17\)
Tương tự ta có: \(BD^2 = 4^2 + 1^2 = 17\)
\(⇒ AC^2 = BD^2\)
\(⇒ AC = BD\)
Vậy hình thang \(ABCD\) có hai đường chéo \(AC = BD\) nên là hình thang cân.
+ Xét tứ giác \(EFGH\)
\(FG // EH ⇒\) Tứ giác \(EFGH\) là hình thang.
Lại có: \(EG = 4\,cm\)
\(FH^2 = 2^2 + 3^2 = 13 \)
\(⇒ FH =\sqrt {13} ≠ EG\)
Vậy hình thang \(EFGH\) có hai đường chéo không bằng nhau nên không phải hình thang cân.