Bài 14 trang 85 SBT toán 8 tập 2

Đề bài

Hình thang \(ABCD (AB // CD)\) có hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O.\) Đường thẳng qua \(O\) và song song với đáy \(AB\) cắt các cạnh bên \(AD, BC\) theo thứ tự tại \(M, N.\) Chứng minh rằng: \(OM = ON\) (h13). 

Hình 13

Lời giải

Xét \(\Delta DAB\) có \(OM // AB\) (gt)

Theo hệ quả định lí Ta-lét ta có: 

\(\displaystyle {{OM} \over {AB}} = {{DO} \over {DB}}\)      (1)

Xét \(\Delta CAB\) có \(ON // AB\) (gt)

Theo hệ quả định lí Ta-lét ta có: 

\( \displaystyle {{ON} \over {AB}} = {{CN} \over {CB}}\)      (2)

Xét \(\Delta BCD\) có \(ON // CD\) (gt)

Theo định lí Ta-lét ta có:

\(\displaystyle{{DO} \over {DB}} = {{CN} \over {CB}}\)        (3)

Từ (1), (2) và (3) suy ra: \(\displaystyle{{OM} \over {AB}} = {{ON} \over {AB}}\)

Vậy \( OM = ON.\)