Bài 1.40 trang 42 SBT hình học 10

a) Cho \(A( - 1;8),B(1;6),C(3;4)\). Chứng minh ba điểm \(A, B, C\) thẳng hàng.b) Cho \(A(1;1),B(3;2),C(m + 4;2m + 1)\). Tìm \(m\) để ba điểm \(A, B, C\) thẳng hàng.

Lời giải

a) \(\overrightarrow {AB}  = (2; - 2),\overrightarrow {AC}  = (4; - 4)\)

Vậy \(\overrightarrow {AC}  = 2\overrightarrow {AB} \)\( \Rightarrow \) ba điểm \(A, B, C\) thẳng hàng.

b) \(\overrightarrow {AB}  = (2;1),\overrightarrow {AC}  = (m + 3;2m)\)

Ba điểm \(A, B, C\) thẳng hàng \( \Leftrightarrow \dfrac{{3m}}{2} = \dfrac{{2m}}{2} \Leftrightarrow m = 1\).