Bài 1.45 trang 42 SBT hình học 10

Đề bài

Cho tam giác \(ABC\) có \(A( - 3;6),B(9; - 10),C( - 5;4)\)

a) Tìm tọa độ của trọng tâm \(G\) của tam giác \(ABC\).

b) Tìm tọa độ điểm \(D\) sao cho tứ giác \(BGCD\) là hình bình hành.

Lời giải

a) Ta có: \(\left\{ \begin{array}{l}{x_G} = \dfrac{{ - 3 + 9 - 5}}{3} = \dfrac{1}{3}\\{y_G} = \dfrac{{6 - 10 + 4}}{3} = 0\end{array} \right.\)

b) Tứ giác \(BGCD\) là hình bình hành thì \(\overrightarrow {BG}  = \overrightarrow {DC} \)

\( \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{3} - 9 =  - 5 - {x_D}\\0 - \left( { - 10} \right) = 4 - {y_D}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_D} = \dfrac{{11}}{3}\\{y_D} =  - 6\end{array} \right.\)

Vậy tọa độ điểm \(D\) là \(D\left( {\dfrac{{11}}{3}; - 6} \right)\).