a) Do \(O\) là trung điểm \(CB\) nên \(OB = OC = \dfrac{a}{2}\) và \(OA = \sqrt {A{C^2} - O{C^2}} \) \( = \sqrt {{a^2} - \dfrac{{{a^2}}}{4}} = \dfrac{{a\sqrt 3 }}{2}\).
Từ hình vẽ ta suy ra \(A\left( {0;\dfrac{{a\sqrt 3 }}{2}} \right),B\left( { - \dfrac{a}{2};0} \right),C\left( {\dfrac{a}{2};0} \right)\)
b) Do \(E\) là trung điểm của \(AC\) nên \(\left\{ \begin{array}{l}{x_E} = \dfrac{{0 + \dfrac{a}{2}}}{2} = \dfrac{a}{4}\\{y_E} = \dfrac{{\dfrac{{a\sqrt 3 }}{2} + 0}}{2} = \dfrac{{a\sqrt 3 }}{4}\end{array} \right.\) nên \(E\left( {\dfrac{a}{4};\dfrac{{a\sqrt 3 }}{4}} \right)\)
c) Tâm đường tròn ngoại tiếp tam giác đều trùng với trọng tâm của tam giác.
Gọi \(G\) là trọng tâm tam giác thì \(\left\{ \begin{array}{l}{x_G} = \dfrac{{0 + \left( { - \dfrac{a}{2}} \right) + \dfrac{a}{2}}}{3} = 0\\{y_G} = \dfrac{{\dfrac{{a\sqrt 3 }}{2} + 0 + 0}}{3} = \dfrac{{a\sqrt 3 }}{6}\end{array} \right.\) hay \(G\left( {0;\dfrac{{a\sqrt 3 }}{6}} \right)\).