a) Xét trong đường tròn nhỏ:
Theo định lí \(2\): trong hai dây của một đường tròn, dây nào lớn hơn thì dây đó gần tâm hơn.
Theo giả thiết \(AB > CD\) suy ra \(AB\) gần tâm hơn, tức là \(OH < OK \).
b) Xét trong đường tròn lớn:
Theo định lí \(2\): trong hai dây của một đường tròn, dây nào gần tâm hơn thì dây đó lớn hơn.
Theo câu \(a\), ta có: \(OH < OK \Rightarrow ME > MF\).
c) Xét trong đường tròn lớn:
Vì \(OH \bot ME \Rightarrow EH=MH=\dfrac{ME}{2}\) (Định lý 2 - trang 103).
Lập luận tương tự, ta có: \(KF=MK=\dfrac{MF}{2}\)
Theo câu \(b\), ta có: \(ME > MF \Rightarrow \dfrac{ME}{2} > \dfrac{MF}{2} \Leftrightarrow MH > MK\)