a) Xét \(∆ADB\) và \(∆BDC,\) ta có:
\(\widehat {BA{\rm{D}}} = \widehat {CB{\rm{D}}}\) ( góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung \(BC\)).
\(\widehat {{D_1}}\) góc chung
Vậy \(∆ADB\) đồng dạng \(∆BDC\) ⇒ \(\displaystyle {{B{\rm{D}}} \over {C{\rm{D}}}} = {{A{\rm{D}}} \over {B{\rm{D}}}} (g-g) \)
\(\Rightarrow B{{\rm{D}}^2} = A{\rm{D}}.C{\rm{D}}\) (đpcm)
b) Ta có \(\widehat {A{\rm{E}}C}\) là góc có đỉnh ở bên ngoài \((O)\)
\(\displaystyle \widehat {AEC} = {sđ\overparen{AC}-sđ\overparen{BC}\over 2} = { sđ\overparen{AB}-sđ\overparen{BC}\over 2} = \widehat {ADB}\)
Xét tứ giác \(BCDE\), ta có: \(\widehat {A{\rm{E}}C}\) và \(\widehat {ADB}\) là hai góc liên tiếp cùng nhìn đoạn \(BC\) và \(\widehat {A{\rm{E}}C} = \widehat {ADB}\) .
Vậy tứ giác \(BCDE\) nội tiếp đường tròn
c) Ta có: \(\widehat {ACB} + \widehat {BC{\rm{D}}} = {180^0}\) (hai góc kề bù).
hay \(\widehat {ABC} + \widehat {BC{\rm{D}}} = {180^0}\) (\(∆ABC\) cân tại \(A\))
\( \Rightarrow \widehat {ABC} = {180^0} - \widehat {BC{\rm{D}}}(1)\)
Vì \(BCDE\) là tứ giác nội tiếp nên
\(\widehat {BE{\rm{D}}} + \widehat {BC{\rm{D}}} = {180^0} \Rightarrow \widehat {BE{\rm{D}}} = {180^0} - \widehat {BC{\rm{D}}}(2)\)
So sánh (1) và (2), ta có: \(\widehat {ABC} = \widehat {BE{\rm{D}}}\)
Ta cũng có: \(\widehat {ABC}\) và \(\widehat {BE{\rm{D}}}\) là hai góc đồng vị. Suy ra: \(BC // DE\) (đpcm)