Bài 15 trang 51 SGK Toán 9 tập 1

a) Vẽ đồ thị của các hàm số \(y = 2x;\,\,\,y = 2x + 5;\,\,\,y =  - \dfrac{2}{3}x\)  và  \(y =  - \dfrac{2}{3}x + 5\) trên cùng một mặt phẳng tọa độ. 

b) Bốn đường thẳng trên cắt nhau tạo thành tứ giác \(OABC\) (\(O\) là gốc tọa độ). Tứ giác \(OABC\) có phải là hình bình hành không ? Vì sao ?

Lời giải

a) 

+) Hàm số  \(y = 2x\):

Cho \(x=1 \Rightarrow y=2.1=2 \Rightarrow M(1; 2)\)

Đồ thị hàm số trên là đường thẳng đi qua gốc \(O\) và điểm \(M(1; 2)\).

+) Hàm số \(y = 2x + 5\):

Cho \(x=0 \Rightarrow y=2.0+5=0+5=5 \Rightarrow B(0; 5)\).

Cho \(x=-2,5 \Rightarrow y=2.(-2,5)+5=-5+5=0 \)

\(\Rightarrow E(-2,5; 0)\)

Đồ thị hàm số trên là đường thẳng đi qua điểm \(B(0; 5)\) và \(E(-2,5; 0)\)

+) Hàm số \(y = - \dfrac{2}{3}x\):

Cho \(x=1 \Rightarrow y=-\dfrac{2}{3}.1=-\dfrac{2}{3} \Rightarrow N {\left(1; -\dfrac{2}{3}\right)}\)

Đồ thị hàm số trên là đường thằng đi qua gốc tọa độ \(O\) và điểm \(N {\left(1; -\dfrac{2}{3}\right)}\) 

+) Hàm số \(y = - \dfrac{2}{3}x + 5\):

Cho \(x=0 \Rightarrow y=-\dfrac{2}{3}.0+5=0+5=5 \Rightarrow B(0; 5)\)

Cho \(x=7,5 \Rightarrow y=-\dfrac{2}{3}.7,5+5=-5 +5=0 \)

\(\Rightarrow F(7,5; 0)\)

Đồ thị hàm số là đường thẳng đi qua hai điểm \(B(0; 5)\) và \(F(7,5; 0)\).

Ta có hình vẽ sau:

  

 b) Ta có:

+ Đồ thị của hàm số \(y = 2x\) song song với đồ thị hàm số \(y =  2x + 5\) \(\Rightarrow OC // AB\)

+ Đồ thị của hàm số \(y=-\dfrac{2}{3}x\) song song với đồ thị hàm số \(y=-\dfrac{2}{3}x+5\) \(\Rightarrow OA // BC\)

Do đó tứ giác \(OABC\)  là một hình bình hành (dấu hiệu nhận biết).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”