Bài 15 trang 7 SBT toán 6 tập 1

Trong các dòng sau, dòng nào cho ta ba số tự nhiên liên tiếp tăng dần?


Lời giải

LG a

\(\) \(x, x+1, x+2 ,\) trong đó \(x ∈ N\) 

Ta có: Số liền sau của số \(x\) là \(x+1\)

Số liền sau của số \(x+1\) là số \(x+2\)

Nên ta có \(x,x+1,x+2\) là ba số tự nhiên liên tiếp tăng dần.

LG b

\(\) \(b-1, b, b+1,\) trong đó \(b ∈ N^*\)

Ta có: Số liền sau của số \(b-1\) là số \(b-1+1=b\)

Số liền sau của số \(b\) là số \(b+1\)

Nên ta có \(b-1,b,b+1\) là ba số tự nhiên liên tiếp tăng dần.

LG c

\(\) \(c, c+1, c+3,\) trong đó \(c ∈ N\)

Nhận thấy \(c+1\) và \(c+3\) hơn kém nhau \(2\) đơn vị nên ba số \(c,c+1,c+3\) không là ba số tự nhiên liên tiếp tăng dần.

LG d

\(\) \(m+1, m, m-1,\) trong đó \(m ∈ N^*\)

Nhận thấy \(m+1,m,m-1\) là ba số tự nhiên liên tiếp giảm dần.

Vậy các dòng có ba số tự nhiên tăng dần là:

\(a)\) \(x, x+1, x+2 ,\) trong đó \(x ∈ N\)

\(b)\) \(b-1, b, b+1,\) trong đó \(b ∈ N^*\)


Phương pháp giải

Hai số tự nhiên liên tiếp hơn kém nhau 1 đơn vị.

Ba số tự nhiên liên tiếp tăng dần có dạng: \(a,a+1,a+2\) hoặc \(a-1,a,a+1\)

Hai số tự nhiên liên tiếp hơn kém nhau 1 đơn vị.

Ba số tự nhiên liên tiếp tăng dần có dạng: \(a,a+1,a+2\) hoặc \(a-1,a,a+1\)

Hai số tự nhiên liên tiếp hơn kém nhau 1 đơn vị.

Ba số tự nhiên liên tiếp tăng dần có dạng: \(a,a+1,a+2\) hoặc \(a-1,a,a+1\)

Hai số tự nhiên liên tiếp hơn kém nhau 1 đơn vị.

Ba số tự nhiên liên tiếp tăng dần có dạng: \(a,a+1,a+2\) hoặc \(a-1,a,a+1\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”