Trên tia đối tia \(CD\) lấy điểm \(M\) sao cho \(CM = AK\)
Ta có:
\(AK + CE = CM + CE = EM\) (*)
Xét \(∆ ABK\) và \(∆ CBM:\)
\(AB = CB\) (gt)
\(\widehat A = \widehat C = {90^0}\)
\(AK = CM\) (theo cách vẽ)
Do đó: \(∆ ABK = ∆ CBM \,(c.g.c)\)
\( \Rightarrow {\widehat B_1} = {\widehat B_4}\) (1)
\(\widehat {KBC} = {90^0} - {\widehat B_1}\) (2)
Trong tam giác \(CBM\) vuông tại \(C.\)
\(\widehat M = {90^0} - {\widehat B_4}\) (3)
Từ (1), (2) và (3) suy ra: \(\widehat {KBC} = \widehat M\) (4)
\(\widehat {KBC} = {\widehat B_2} + {\widehat B_3}\) mà \({\widehat B_1} = {\widehat B_2}\) (gt)
\({\widehat B_1} = {\widehat B_4}\) (chứng minh trên)
Suy ra: \({\widehat B_2} = {\widehat B_4} \Rightarrow {\widehat B_2} + {\widehat B_3} = {\widehat B_3} + {\widehat B_4}\) hay \(\widehat {KBC} = \widehat {EBM}\) (5)
Từ (4) và (5) suy ra: \(\widehat {EBM} = \widehat M\)
\(⇒ ∆ EBM\) cân tại \(E\) \(⇒ EM = BE\) (**)
Từ (*) và (**) suy ra: \(AK + CE = BE.\)