Bài 154 trang 99 SBT Toán 8 tập 1

Đề bài

Cho hình vuông \(ABCD,\) điểm \(E\) thuộc cạnh \(CD.\) Tia phân giác của góc \(ABE\) cắt \(AD\) ở \(K.\) Chứng minh rằng \(AK + CE = BE.\)

Lời giải

Trên tia đối tia \(CD\) lấy điểm \(M\) sao cho \(CM = AK\)

Ta có:

\(AK + CE = CM + CE = EM\) (*)

Xét \(∆ ABK\) và \(∆ CBM:\)

\(AB = CB\) (gt)

\(\widehat A = \widehat C = {90^0}\)

\(AK = CM\) (theo cách vẽ)

Do đó: \(∆ ABK = ∆ CBM \,(c.g.c)\)

\( \Rightarrow {\widehat B_1} = {\widehat B_4}\) (1)

\(\widehat {KBC} = {90^0} - {\widehat B_1}\) (2)

Trong tam giác \(CBM\) vuông tại \(C.\)

\(\widehat M = {90^0} - {\widehat B_4}\) (3)

Từ (1), (2) và (3) suy ra: \(\widehat {KBC} = \widehat M\) (4)

\(\widehat {KBC} = {\widehat B_2} + {\widehat B_3}\)  mà  \({\widehat B_1} = {\widehat B_2}\) (gt)

\({\widehat B_1} = {\widehat B_4}\) (chứng minh trên)

Suy ra: \({\widehat B_2} = {\widehat B_4} \Rightarrow {\widehat B_2} + {\widehat B_3} = {\widehat B_3} + {\widehat B_4}\) hay \(\widehat {KBC} = \widehat {EBM}\) (5)

Từ (4) và (5) suy ra: \(\widehat {EBM} = \widehat M\)

\(⇒ ∆ EBM\) cân tại \(E\) \(⇒ EM = BE\) (**)

Từ (*) và (**) suy ra: \(AK + CE = BE.\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”