Bài 1.57 trang 24 SBT hình học 12

Cho hình chóp tứ giác đều \(S.ABCD\) có mặt bên tạo với đáy một góc bằng \({60^0}\) và diện tích một mặt bên bằng \(\dfrac{{{a^2}}}{2}\). Thể tích của hình chóp bằng:

A. \(\dfrac{{\sqrt 3 }}{9}{a^3}\)                   B. \(\dfrac{{\sqrt 3 }}{6}{a^3}\)

C. \(\dfrac{{\sqrt 3 }}{3}{a^3}\)                   D. \(\dfrac{{\sqrt 3 }}{2}{a^3}\)

Lời giải

Gọi \(M\) là trung điểm của \(CD\), \(O\) là tâm của hình vuông \(ABCD\).

Đặt \(CD = x\). Do \({S_{SCD}} = \dfrac{{{a^2}}}{2}\) \( \Rightarrow SM = \dfrac{{2{S_{SCD}}}}{{CD}} = \dfrac{{{a^2}}}{x}\)

Lại có \(OM \bot CD,SM \bot CD\) nên góc giữa \(\left( {SCD} \right)\) và \(\left( {ABCD} \right)\) bằng \(\widehat {SMO} = {60^0}\)

Tam giác \(SOM\) vuông tại \(O\) có \(OM = \dfrac{x}{2}\), \(SM = \dfrac{{{a^2}}}{x}\) và \(\widehat {SMO} = {60^0}\)

\( \Rightarrow \cos {60^0} = \dfrac{{OM}}{{SM}}\) \( \Leftrightarrow \dfrac{1}{2} = \dfrac{x}{2}:\dfrac{{{a^2}}}{x} \Leftrightarrow x = a\)

\( \Rightarrow OM = \dfrac{a}{2},SM = a\) \( \Rightarrow SO = \sqrt {S{M^2} - O{M^2}}  = \dfrac{{a\sqrt 3 }}{2}\)

Vậy thể tích \({V_{S.ABCD}} = \dfrac{1}{3}{S_{ABCD}}.SO\) \( = \dfrac{1}{3}.{a^2}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{{a^3}\sqrt 3 }}{6}\).

Chọn B.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”