Bài 1.58 trang 41 SBT đại số và giải tích 11

Đề bài

Cho phương trình \(8{\sin}^6 x={\sin}^2 2x\).

Xét các giá trị

\((I) k\pi\)

\((II) \dfrac{\pi}{4}+k\dfrac{\pi}{2}\)

\((III)\dfrac{\pi}{2}+k\pi\)

\((k\in\mathbb{Z})\).

Trong các giá trị trên, giá trị nào là nghiệm của phương trình đã cho?

A. Chỉ \((I)\)

B. Chỉ \((II)\)

C. Chỉ \((III)\)

D. \((I)\) và \((II)\).

Lời giải

Ta có: \(8{\sin}^6 x={\sin}^2 2x\)

\(\Leftrightarrow 8{\sin}^6 x=4{\sin}^2 x{\cos}^2 x\)

\(\Leftrightarrow 4{\sin}^2 x(2{\sin}^4 x+{\sin}^2 x-1)=0\)

\( \Leftrightarrow \left[ \begin{array}{l}{\sin}^2 x = 0\\2{\sin}^4 x+{\sin}^2 x-1=0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l} x = k\pi,k\in\mathbb{Z}\\{\sin}^2 x=\dfrac{1}{2}\\{\sin}^2 x=-1\le 0\text{(loại)}\end{array} \right.\)

Với: \({\sin}^2 x=\dfrac{1}{2}\)

\(\Leftrightarrow \dfrac{1-\cos 2x}{2}=\dfrac{1}{2}\)

\(\Leftrightarrow \cos 2x=0\)

\(\Leftrightarrow 2x=\dfrac{\pi}{2}+k\pi,k\in\mathbb{Z}\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+k\dfrac{\pi}{2},k\in\mathbb{Z}\)

Vậy phương trình có nghiệm là \(x=k\pi,k\in\mathbb{Z}\) và \(x=\dfrac{\pi}{4}+k\dfrac{\pi}{2},k\in\mathbb{Z}\)

Đáp án: D.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”