Xét đường tròn \((O)\) có \(SM \bot OM\) (tính chất tiếp tuyến)
\( \Rightarrow \Delta OMS\) vuông tại \(M\)
Nên \(\widehat {MSO} + \widehat {MOS} = {90^o}\)
Lại có: \(AB \bot CD\) \((gt)\)
\( \Rightarrow \widehat {MOS} + \widehat {MOA} = {90^o}\)
Suy ra: \(\widehat {MSO} = \widehat {MOA}\) hay \(\widehat {MSD} = \widehat {MOA}\) \((1)\)
Mà \(\widehat {MOA} = 2\widehat {MBA}\) (góc ở tâm và góc nội tiếp cùng chắn cung \(\overparen{AM}\)) \((2)\)
Từ \((1)\) và \((2)\) suy ra: \(\widehat {MSD} = 2\widehat {MBA}\)