Đố. Hãy tìm chỗ sai trong phép chứng minh "Con muỗi nặng bằng con voi" dưới đây.
Giả sử con muỗi nặng \(m\) (gam), còn con voi nặng \(V\) (gam). Ta có
\({m^2} + {V^2} = {V^2} + {m^2}\)
Cộng hai về với \(-2mV\), ta có
\({m^2} - 2mV + {V^2} = {V^2} - 2mV + {m^2},\)
hay \({\left( {m - V} \right)^2} = {\left( {V - m} \right)^2}\)
Lấy căn bậc hai mỗi vế của bất đẳng thức trên, ta được:
\(\sqrt {{{\left( {m - V} \right)}^2}} = \sqrt {{{\left( {V - m} \right)}^2}} \) (1)
Do đó \(m - V = V - m\) (2)
Từ đó ta có \(2m = 2V\), suy ra \(m = V\). Vậy con muỗi nặng bằng con voi (!).